Functional characterization of human PFTK1 as a cyclin-dependent kinase.

Proc Natl Acad Sci U S A

Shanghai Genomics Inc., Chinese National Human Genome Center, Shanghai, Zhangjiang Hi-Tech Park, Shanghai 201203, China.

Published: May 2007

Cyclin-dependent kinases (CDKs) are crucial regulators of the eukaryotic cell cycle whose activities are controlled by associated cyclins. PFTK1 shares limited homology to CDKs, but its ability to associate with any cyclins and its biological functions remain largely unknown. Here, we report the functional characterization of human PFTK1 as a CDK. PFTK1 specifically interacted with cyclin D3 (CCND3) and formed a ternary complex with the cell cycle inhibitor p21(Cip1) in mammalian cells. We demonstrated that the kinase activity of PFTK1 depended on CCND3 and was negatively regulated by p21(Cip1). Moreover, we identified the tumor suppressor Rb as a potential downstream substrate for the PFTK1/CCND3 complex. Importantly, knocking down PFTK1 expression by using siRNA caused cell cycle arrest at G(1), whereas ectopic expression of PFTK1 promoted cell proliferation. Taken together, our data strongly suggest that PFTK1 acts as a CDK that regulates cell cycle progression and cell proliferation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1890480PMC
http://dx.doi.org/10.1073/pnas.0703327104DOI Listing

Publication Analysis

Top Keywords

cell cycle
16
functional characterization
8
characterization human
8
pftk1
8
human pftk1
8
cell proliferation
8
cell
6
pftk1 cyclin-dependent
4
cyclin-dependent kinase
4
kinase cyclin-dependent
4

Similar Publications

The study aimed to analyze the long-term outcomes of [Lu]Lu-DOTAGA.FAPi dimer therapy in individuals diagnosed with radioiodine-resistant (RAI-R) follicular cell-derived thyroid cancer. In this retrospective study, 73 patients with RAI-R follicular thyroid carcinoma who had undergone multiple lines of previous treatments were included.

View Article and Find Full Text PDF

Mitochondrial retrograde signaling (MRS) pathways relay the functional status of mitochondria to elicit homeostatic or adaptive changes in nuclear gene expression. Budding yeast have "intergenomic signaling" pathways that sense the amount of mitochondrial DNA (mtDNA) independently of oxidative phosphorylation (OXPHOS), the primary function of genes encoded by mtDNA. However, MRS pathways that sense the amount of mtDNA in mammalian cells remain poorly understood.

View Article and Find Full Text PDF

Background: Photodynamic therapy (PDT) is a noninvasive cancer treatment that works by using light to stimulate the production of excessive cytotoxic reactive oxygen species (ROS), which effectively eliminates tumor cells. However, the therapeutic effects of PDT are often limited by tumor hypoxia, which prevents effective tumor cell elimination. The oxygen (O) consumption during PDT can further exacerbate hypoxia, leading to post-treatment adverse events.

View Article and Find Full Text PDF

Virus budding is a critical step in the replication cycle of enveloped viruses, closely linked to viral spread, disease progression, and clinical outcomes. The budding of many enveloped RNA viruses is facilitated by the hijacking of the host endosomal sorting complex required for transport (ESCRT) proteins through viral late domains. These late domains are essential for progeny virus production and are highly conserved, making the interaction between late domains and host ESCRT proteins a potential target for the development of antiviral therapeutics.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) ranks among the most prevalent types of cancer globally. Zinc finger protein 169 (ZNF169) holds significant importance as a transcription factor, yet its precise function in HCC remains to be elucidated. This study aims to examine the clinical importance, biological functions, and molecular pathways associated with ZNF169 in the development of HCC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!