Histodynamics of bone tissue formation around immediately loaded cylindrical implants in the rabbit.

Clin Oral Implants Res

Department of Prosthetic Dentistry/BIOMAT Research Group, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, K. U. Leuven, Leuven, Belgium.

Published: August 2007

Objectives: The local mechanical environment influences early peri-implant tissue formation. It is still unclear whether immediate loading limits or promotes peri-implant osteogenesis and which mechanical parameters are important herein. The present study evaluated the influence of well-controlled mechanical stimuli on the tissue response around immediately loaded cylindrical turned titanium implants at two different observation periods.

Material And Methods: A repeated sampling bone chamber, consisting of dual-structure perforated hollow cylinders with a cylindrical implant, was installed in the tibia of 14 rabbits and used to conduct three displacement-controlled immediate loading experiments: (i) 30 microm - 400 cycles/day - 1 Hz frequency - 2 x/week - 6 weeks; (ii) 30 microm - 400 cycles/day - 1 Hz - 2 x/week - 6 weeks, followed by another 6 weeks with a 50 microm - 800 cycles/day - 1 Hz - 2 x/week loading protocol; and (iii) 0 microm implant displacement for 12 weeks. A linear mixed model and logistic mixed model with alpha=5% were conducted on the data set.

Results: The tissue area fraction was significantly the highest after 12 weeks of loading. The bone area fraction was significantly different between all three loading conditions, with the highest values for the 12-week loading experiment. Twelve-week stimulation resulted in a significantly higher mineralized bone fraction than 6 weeks. Loading did have a significantly positive effect on the mineralized bone fraction. The incidence of osteoid-to-implant and bone-to-implant contact increased significantly when loading the implant for 12 weeks.

Conclusion: Immediate loading had a positive effect on the tissue differentiation and bone formation around cylindrical turned titanium implants. Controlled implant micro-motion up to 50 microm had a positive effect on the bone formation at its interface.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1600-0501.2007.01339.xDOI Listing

Publication Analysis

Top Keywords

loading
9
tissue formation
8
loaded cylindrical
8
cylindrical turned
8
turned titanium
8
titanium implants
8
microm 400
8
400 cycles/day
8
x/week weeks
8
weeks microm
8

Similar Publications

The optimization of auto parts supply chain logistics plays a decisive role in the development of the automotive industry. To reduce logistics costs and improve transportation efficiency, this paper addresses the joint optimization problem of multi-vehicle pickup and delivery transportation paths under time window constraints, coupled with the three-dimensional loading of goods. The model considers mixed time windows, three-dimensional loading constraints, cyclic pickup and delivery paths, varying vehicle loads and volumes, flow balance, and time window constraints.

View Article and Find Full Text PDF

The mechanical responses of sandy soil under dynamic loading is closely related to protective engineering and geotechnical engineering, is still not fully understood. To investigate the energy attenuation law and propagation velocity of compressed waves in dry sandy soil, this paper focuses on the dynamic response of compression waves in the specimen under single impact and repetitive impact conditions using an improved split Hopkinson pressure bar (SHPB). The results reveal that the length of the specimen follows an exponential relationship with the attenuation of the peak stress.

View Article and Find Full Text PDF

Ampere-level reduction of pure nitrate by electron-deficient Ru with K ions repelling effect.

Nat Commun

December 2024

School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.

Electrochemical nitrate reduction reaction offers a sustainable and efficient pathway for ammonia synthesis. Maintaining satisfactory Faradaic efficiency for long-term nitrate reduction under ampere-level current density remains challenging due to the inevitable hydrogen evolution, particularly in pure nitrate solutions. Herein, we present the application of electron deficiency of Ru metals to boost the repelling effect of counter K ions via the electric-field-dependent synergy of interfacial water and cations, and thus largely promote nitrate reduction reaction with a high yield and well-maintained Faradaic efficiency under ampere-level current density.

View Article and Find Full Text PDF

Polymer electrolyte membrane water electrolyzers (PEMWEs) are a critical technology for efficient hydrogen production to decarbonize fuels and industrial feedstocks. To make hydrogen cost-effective, the overpotentials across the cell need to be decreased and platinum-group metal loading reduced. One overpotential that needs to be better understood is due to mass transport limitations from bubble formation within the porous transport layer (PTL) and anode catalyst layer (ACL), which can lead to a reduction in performance at typical operating current densities.

View Article and Find Full Text PDF

Recycling e-waste into gold-loaded covalent organic framework catalysts for terminal alkyne carboxylation.

Nat Commun

December 2024

Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, USA.

The rising demand for gold requires innovative methods for its recovery from e-waste. Here we present the synthesis of two tetrazine-based vinyl-linked covalent organic frameworks: TTF-COF and TPE-COF that adsorb gold ions and nanoparticles and catalyze the carboxylation of terminal alkynes. These covalent organic frameworks have low band gaps and high photocurrent responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!