Genipin, a reagent of plant origin was used for the immobilization of lipase by cross-linking to chitosan beads. The catalytic properties and operational and storage stabilities of the immobilized lipase were compared with the soluble lipase. Under optimum conditions, 198 microg protein was bound per g chitosan with a protein-coupling yield of 35%. The hydrolytic activity was 10.8 U/g chitosan and the relative specific activity was 108%. The immobilized lipase showed better thermal and pH stabilities compared to the soluble form. The immobilized enzyme exhibited mass transfer limitations as reflected by a higher apparent K(m) value and a lower energy of activation. The immobilized enzyme retained about 74% of its initial activity after five hydrolytic cycles.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10826060701386752DOI Listing

Publication Analysis

Top Keywords

immobilization lipase
8
chitosan beads
8
immobilized lipase
8
compared soluble
8
immobilized enzyme
8
chitosan
4
lipase chitosan
4
beads natural
4
natural cross-linker
4
cross-linker genipin
4

Similar Publications

Squid viscera, a byproduct of squid processing, contains oil rich in omega-3 fatty acids (up to 10% by mass) and the antioxidant astaxanthin. However, its high free fatty acid (FFA) content compromises stability. To address this, pilot-scale (200 L) enzymatic re-esterification of squid oil using immobilized lipase (Lipozyme RMIM) was demonstrated, resulting in high acylglyceride yields.

View Article and Find Full Text PDF

This study explores the immobilization of lipase from Candida rugosa (CRL) on hemp tea waste to catalyze the esterification of oleic acid with primary aliphatic C2-C12 alcohols. in a solvent-free system. The immobilization method employed was adsorption, chosen for its simplicity, low cost, and ability to preserve enzyme activity.

View Article and Find Full Text PDF

The dairy industry is progressively integrating advanced enzyme technologies to optimize processing efficiency and elevate product quality. Among these technologies, enzyme immobilization has emerged as a pivotal innovation, offering considerable benefits in terms of enzyme reusability, stability, and overall process sustainability. This review paper explores the latest improvements in enzyme immobilization techniques and their industrial applications within milk processing.

View Article and Find Full Text PDF

The development of efficient immobilization support for the enhancement of enzyme activity and recyclability is a highly desirable objective. Single-crystalline ordered macro-microporous ZIF-8 (SOM-ZIF-8), has emerged as a highly effective matrix for enzyme immobilization, however, the inherent hydrophobic nature limits its further advancement. Herein, we have customized the immobilization of the Pseudomonas cepacia lipase (LP) in the modification-channels of SOM-ZIF-8 by functionalizing the inner surface-properties with polyethylene glycol (PEG) (LP@SOM-ZIF-8-PEG), and significant enhancement of the activity and (thermal, solvent and cyclic) stability can be realized.

View Article and Find Full Text PDF

Background: Immobilized enzyme possessing both high activity and good selectivity is important in practice. In this study, Candida antarctica lipase B (CALB) was immobilized onto the macroporous resin ADS-17 for triacylglycerol (TAG) synthesis through esterification of oleic acid and glycerol. The reaction conditions were optimized by single-factor study and orthogonal test, and the reusability of the immobilized CALB (CALB@ADS-17) was evaluated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!