Networks of transcription factors control physiological, developmental and environmental responses. Root iron acquisition responses are controlled by the essential bHLH protein FIT. Recently, two group Ib BHLH genes were reported to be iron deficiency-regulated. Here, we studied expression patterns of these two group Ib BHLH genes and of their two closest homologs to analyze whether their regulation would support a function in iron deficiency responses. We found that BHLH038, BHLH039, BHLH100 and BHLH101 (comprising a subgroup of BHLH Ib genes) were up regulated by iron deficiency in roots and leaves. Single insertion mutants had no visible phenotype and were capable of inducing root iron acquisition responses, presumably due to functional redundancy. Specific metal treatments like nickel, high zinc or high copper resulted in induction of the four BHLH Ib genes whereas high iron, low copper and low zinc repressed gene expression. Induction of the four BHLH Ib genes was also found in multiple iron acquisition mutants including fit. Ectopic activation of FIT did not suppress the four BHLH Ib genes. Split-root analyses using promoter-GUS lines showed that FIT and BHLH100 promoters were controlled by different local and systemic signals involved in their regulation by iron. These results indicated that the four BHLH Ib genes were induced independently from FIT by conditions causing iron deficiency. Taken together, BHLH038, BHLH039, BHLH100 and BHLH101 function differently from FIT and may be involved in mediating a signal related to iron deficiency-induced stress and/or internal iron homeostasis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00425-007-0535-xDOI Listing

Publication Analysis

Top Keywords

bhlh genes
32
iron
12
iron acquisition
12
iron deficiency
12
bhlh
9
subgroup bhlh
8
genes
8
root iron
8
acquisition responses
8
group bhlh
8

Similar Publications

Background: Soil salinity has been a serious threat to agricultural production worldwide, including soybeans. Glycine soja, the wild ancestor of cultivated soybeans, harbors high genetic diversity and possesses attractive rare alleles.

Objective: We conducted a transcriptome analysis of G.

View Article and Find Full Text PDF

Piper longum, commonly known as long pepper, is highly valued for its bioactive alkaloid piperine, which has diverse pharmaceutical and culinary applications. In this study, we used high-throughput sequencing and de novo transcriptome assembly to analyze the transcriptomes of P. longum leaves, roots, and spikes.

View Article and Find Full Text PDF

SmbHLH93can activate the expression of SmCHS, SmANS, SmDFR and SmF3H.Overexpression of SmbHLH93promotes anthocyanin biosynthesis. SmbHLH93can interact with SmMYB1 to promote anthocyanin accumulation.

View Article and Find Full Text PDF

A natural variant of COOL1 gene enhances cold tolerance for high-latitude adaptation in maize.

Cell

January 2025

State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China. Electronic address:

Low temperature severely limits the growth, yield, and geographical distribution of maize (Zea mays L.). How maize adapts to cold climates remains largely unclear.

View Article and Find Full Text PDF

Stomatal abundance sets plants' potential for gas exchange, impacting photosynthesis and transpiration and, thus, plant survival and growth. Stomata originate from cell lineages initiated by asymmetric divisions of protodermal cells, producing meristemoids that develop into guard cell pairs. The transcription factors SPEECHLESS, MUTE, and FAMA are essential for stomatal lineage development, sequentially driving cell division and differentiation events.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!