Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We investigated the effect of oxidative stress on cell cycle regulation of neural stem/progenitor cells in neurosphere culture. We exposed murine neural stem/progenitor cells to 2 Gy of X-ray irradiation at 48 h after first passage. We found that G2 and G1-arrested cells increased at 3 and 12 h after X-ray irradiation, respectively by using laser scanning cytometer. We revealed that such G2 and G1 arrests were correlated with phosphorylation of cdc2 and p53, respectively by Western blotting analysis. Furthermore, we found that the effects of X-ray irradiation of neural stem/progenitor cells involved inactivation of Notch signal. These results suggest that the drastic response of neural stem/progenitor cells after X-ray irradiation occurred even in the short period.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/WNR.0b013e3281053c34 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!