A number of chemicals released into the environment have the potential to disturb the normal functioning of the endocrine system. These chemicals termed endocrine disruptors (EDs) act by mimicking or antagonizing the normal functions of natural hormones and may pose serious threats to the reproductive capability and development of living species. Batteries of laboratory bioassays exist for detecting these chemicals. However, due to time and cost limitations, they cannot be used for all the chemicals which can be found in the ecosystems. SAR and QSAR models are particularly suited to overcome this problem but they only deal with specific targets/endpoints. The interest to account for profiles of endocrine activities instead of unique endpoints to better gauge the complexity of endocrine disruption is discussed through a SAR study performed on 11,416 chemicals retrieved from the US-NCI database and for which 13 different PASS (Prediction of Activity Spectra for Substances) endocrine activities were available. Various multivariate analyses and graphical displays were used for deriving structure-activity relationships based on specific structural features.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10629360701303669 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!