The development of a radiation thermometer calibrated for spectral radiance responsivity using cryogenic, electrical-substitution radiometry to determine the thermodynamic temperatures of the Ag- and Au-freezing temperatures is described. The absolute spectral radiance responsivity of the radiation thermometer is measured in the NIST Spectral Irradiance and Radiance Responsivity Calibrations using Uniform Sources (SIRCUS) facility with a total uncertainty of 0.15% (k=2) and is traceable to the electrical watt, and thus the thermodynamic temperature of any blackbody can be determined by using Planck radiation law and the measured optical power. The thermodynamic temperatures of the Ag- and Au-freezing temperatures are determined to be 1234.956 K (+/-0.110 K) (k=2) and 1337.344 K(+/-0.129 K) (k=2) differing from the International Temperature Scale of 1990 (ITS-90) assignments by 26 mK and 14 mK, respectively, within the stated uncertainties. The temperatures were systematically corrected for the size- of-source effect, the nonlinearity of the preamplifier and the emissivity of the blackbody. The ultimate goal of these thermodynamic temperature measurements is to disseminate temperature scales with lower uncertainties than those of the ITS-90. These results indicate that direct disseminations of thermodynamic temperature scales are possible.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ao.46.002870DOI Listing

Publication Analysis

Top Keywords

radiation thermometer
12
radiance responsivity
12
thermodynamic temperature
12
spectral radiance
8
thermodynamic temperatures
8
temperatures ag-
8
ag- au-freezing
8
au-freezing temperatures
8
temperature scales
8
temperatures
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!