Genetic viability and population history of the giant panda, putting an end to the "evolutionary dead end"?

Mol Biol Evol

Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, the Chinese Academy of Sciences, Haidian, Beijing, PR China.

Published: August 2007

The giant panda (Ailuropoda melanoleuca) is currently threatened by habitat loss, fragmentation, and human persecution. Its dietary specialization, habitat isolation, and reproductive constraints have led to a perception that this is a species at an "evolutionary dead end," destined for deterministic extinction in the modern world. Here we examine this perception by a comprehensive investigation of its genetic diversity, population structure, and demographic history across its geographic range. We present analysis of 655 base pairs of mitochondrial (mt) control region (CR) DNA and 10 microsatellite loci for samples from its 5 extant mountain populations (Qinling, Minshan, Qionglai, Liangshan, and Lesser Xiangling). Surprisingly, extant populations display average to high levels of CR and microsatellite diversity compared with other bear species. Genetic differentiation among populations was significant in most cases but was markedly higher between Qinling and the other mountain ranges, suggesting, minimally, that the Qinling population should comprise a separate management unit for conservation purposes. Recent demographic inference using microsatellite markers demonstrated a clear genetic signature for population decline starting several thousands years ago or even further back in the past, and being accelerated and enhanced by the expansion of human populations. Importantly, these data suggest that the panda is not a species at an evolutionary "dead end," but in common with other large carnivores, has suffered demographically at the hands of human pressure. Conservation strategies should therefore focus on the restoration and protection of wild habitat and the maintenance of the currently substantial regional genetic diversity, through active management of disconnected populations.

Download full-text PDF

Source
http://dx.doi.org/10.1093/molbev/msm099DOI Listing

Publication Analysis

Top Keywords

giant panda
8
"evolutionary dead
8
genetic diversity
8
genetic
5
populations
5
genetic viability
4
population
4
viability population
4
population history
4
history giant
4

Similar Publications

Ecological and anthropogenic drivers of local extinction and colonization of giant pandas over the past 30 years.

Ecology

January 2025

Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China.

Understanding the patterns and drivers of species range shifts is essential to disentangle mechanisms driving species' responses to global change. Here, we quantified local extinction and colonization dynamics of giant pandas (Ailuropoda melanoleuca) using occurrence data collected by harnessing the labor of >1000 workers and >60,000 worker days for each of the three periods (TP1: 1985-1988, TP2: 1998-2002, and TP3: 2011-2014), and evaluated how these patterns were associated with (1) protected area, (2) local rarity/abundance, and (3) abiotic factors (i.e.

View Article and Find Full Text PDF

Non-Structural Protein V of Canine Distemper Virus Induces Autophagy via PI3K/AKT/mTOR Pathway to Facilitate Viral Replication.

Int J Mol Sci

December 2024

Key Laboratory of Veterinary Medicine in Universities of Sichuan Province, College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, 16 Yihuan Rd., Chengdu 610041, China.

Canine distemper (CD) is a highly infectious disease of dogs which is caused by canine distemper virus (CDV). Previous studies have demonstrated that CDV infection can induce autophagy in cells. However, the mechanism underlying CDV-induced autophagy remains not fully understood.

View Article and Find Full Text PDF

Low Reproductivity of Giant Pandas May Be Associated with Increased Vaginal .

Microorganisms

December 2024

Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China.

The poor reproductive capacity of giant pandas significantly hinders the development of captive populations, with 80.88% of adult individuals being unable to successfully become pregnant and deliver offspring. The disturbance of vaginal microbiota has been proven to potentially lead to miscarriage, abortion, and stillbirth in mammals.

View Article and Find Full Text PDF

Complete Mitochondrial Genomes of and with Phylogenetic Analysis of Charadriiformes.

Genes (Basel)

December 2024

Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi'an 710032, China.

Background: Plovers (Charadriidae), within the order of Charadriiformes, a group of modern birds distributed worldwide, are a frequent subject of molecular phylogenetic studies. While research on mitochondrial genome (mitogenome) variation within the family Charadriidae, especially intraspecific variation, is limited. Additionally, the monophyly of and the phylogenetic placement of remain contentious.

View Article and Find Full Text PDF

Predicting Body Weight from Birth to Old Age in Giant Pandas Using Machine Learning.

Animals (Basel)

December 2024

Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China.

The giant panda () is one of the animals with the largest body weight differences between its birth and adult stages, where the newborn cub is 0.1% the size of its mother. The rapid growth of panda cubs has been reported previously, but little is known about the growth pattern of their entire lifetime.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!