Background And Aims: Convolvulaceae is the most advanced plant family (asterid clade) that produces seeds with physical dormancy (water-impermeable seed coat). There are several different opinions about the nature of the specialized structure ('water gap') in the seed coat through which water initially enters seeds of Convolvulaceae, but none of them has been documented clearly. The primary aim of the study was to identify the water gap in seeds of Ipomoea lacunosa (Convolvulaceae) and to describe its morphology, anatomy and function.

Methods: Light microscopy, scanning electron microscopy, tissue-sectioning, dye-tracking and blocking experiments were used to describe the morphology, anatomy and function of the water gap in seeds of I. lacunosa.

Key Results: Dormancy-breaking treatments caused slits to form around the two bulges on the seed coat adjacent to the hilum, and dye entered the seed only via the disrupted bulges. Bulge anatomy differs from that of the rest of the seed coat. Sclereid cells of the bulges are more compacted and elongated than those in the hilum pad and in the rest of the seed coat away from the bulges.

Conclusions: The transition area between elongated and square-shaped sclereid cells is the place where the water gap opens. Morphology/anatomy of the water gap in Convolvulaceae differs from that of taxa in the other 11 angiosperm plant families that produce seeds with physical dormancy for which it has been described.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2735290PMC
http://dx.doi.org/10.1093/aob/mcm070DOI Listing

Publication Analysis

Top Keywords

water gap
20
seed coat
20
morphology anatomy
12
physical dormancy
12
gap seeds
12
ipomoea lacunosa
8
seeds convolvulaceae
8
seeds physical
8
describe morphology
8
rest seed
8

Similar Publications

Internal instability of embankment soils under seepage can occur in two distinct ways: suffusion and suffosion. Suffusion involves the removal of fine particles from the matrix without causing significant disturbance to the soil skeleton, while suffosion is characterized by the movement of fine particles accompanied by skeleton collapse or deformation. In terms of dam safety, suffosion poses a greater threat than suffusion.

View Article and Find Full Text PDF

The Jordan Valley (JV) is a critical region where the interplay of water, energy, food, and ecosystem (WEFE) dynamics presents both challenges and opportunities for sustainable development and climate change mitigation and adaptation. In such a transboundary river basin with acute nexus problems and a long history of conflicts, it is essential that conscious efforts are made to pluralize the debate and actively encourage stakeholders' empowerment, participation and fair collaboration in strategic planning. An integrated framework for participatory strategic planning in the WEFE nexus is proposed, which has been developed in the context of the JV case study.

View Article and Find Full Text PDF

Characterisation and anaerobic digestion of fat, oil and grease (FOG) waste from wastewater treatment plants.

J Environ Manage

January 2025

Department of Civil, Environmental and Architectural Engineering, University of Padova, Via Marzolo 9, 35131, Padova, Italy.

The materials removed in the oil separation units of wastewater treatment plants can be referred to as fat, oil and grease (FOG) waste. FOG waste accumulation in treatment plants can cause clogging of pipes, production of excessive scums and foams, and negatively affect air/liquid oxygen transfer. While conventional disposal routes of this material can be limited by its water and organic content, FOG can represent a source of bio-energy other than bio-diesel production.

View Article and Find Full Text PDF

Incidental nanoparticle characterisation in industrial settings to support risk assessment modelling.

Int J Hyg Environ Health

January 2025

Institute of Environmental Assessment and Water Research - Spanish Research council (IDAEA-CSIC), Barcelona, 08034, Spain; Spanish Ministry of Ecological Transition, Pollution Prevention Unit, Pza. San Juan de la Cruz 10, 28071, Madrid, Spain.

Research on nanoparticle (NP) release and potential exposure can be assessed through experimental field campaigns, laboratory simulations, and prediction models. However, risk assessment models are typically designed for manufactured NP (MNP) and have not been adapted for incidental NP (INP) properties. A notable research gap is identifying NP sources and their chemical, physical, and toxicological properties, especially in real-world settings.

View Article and Find Full Text PDF

Seagrasses represent a significant class of marine foundation species, yet the distribution of seagrasses in the Yellow Sea and Bohai Sea remains uncertain, thereby impeding the efficacy of conservation and restoration practices. In this study, the spatial and temporal distribution pattern of seagrasses was simulated by the MaxEnt model based on the construction of marine environment and human activity datasets. The main controlling factors affecting seagrass potential distribution were analyzed, and the response of seagrass distribution to global change was clarified.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!