A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Riluzole, a glutamate release inhibitor, induces loss of righting reflex, antinociception, and immobility in response to noxious stimulation in mice. | LitMetric

Riluzole, a glutamate release inhibitor, induces loss of righting reflex, antinociception, and immobility in response to noxious stimulation in mice.

Anesth Analg

Department of Dental Anesthesiology, Division of Clinical Medical Science, Programs for Applied Biomedicine, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan.

Published: June 2007

Background: The general anesthetic state comprises behavioral and perceptual components, including amnesia, unconsciousness, analgesia, and immobility. In vitro, glutamatergic excitatory neurons are important targets for anesthetic action at the cellular and microcircuits levels. Riluzole (2-amino-6-[trifluoromethoxy]benzothiazole) is a neuroprotective drug that inhibits glutamate release from nerve terminals in the central nervous system. Here, we examined in vivo the ability of riluzole to produce components of the general anesthetic state through a selective blockade of glutamatergic neurotransmission.

Methods: Riluzole was administered intraperitoneally in adult male ddY mice. To assess the general anesthetic components, three end-points were used: 1) loss of righting reflex (LORR; as a measure of unconsciousness), 2) loss of movement in response to noxious stimulation (as a measure of immobility), and 3) loss of nociceptive response (as a measure of analgesia).

Results: The intraperitoneal administration of riluzole induced LORR in a dose-dependent fashion with a 50% effective dose value of 27.4 (23.3-32.2; 95% confidence limits) mg/kg. The behavioral and microdialysis studies revealed that time-course changes in impairment and LORR induced by riluzole corresponded with decreased glutamate levels in the mouse brain. This suggests that riluzole-induced LORR (unconsciousness) could result, at least in part, from its ability to decrease brain glutamate concentrations. Riluzole dose-dependently produced not only LORR, but also loss of movement in response to painful stimulation (immobility), and loss of nociceptive response (analgesia) with 50% effective dose values of 43.0 (37.1-49.9), and 10.0 (7.4-13.5) mg/kg, respectively. These three dose-response curves were parallel, suggesting that the behavioral effects of riluzole may be mediated through a common site of action.

Conclusions: These findings suggest that riluzole-induced LORR, immobility, and antinociception appear to be associated with its ability to inhibit glutamatergic neurotransmission in the central nervous system.

Download full-text PDF

Source
http://dx.doi.org/10.1213/01.ane.0000263267.04198.36DOI Listing

Publication Analysis

Top Keywords

general anesthetic
12
riluzole
8
glutamate release
8
loss righting
8
righting reflex
8
response noxious
8
noxious stimulation
8
anesthetic state
8
central nervous
8
nervous system
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!