We investigated whether Rad51 overexpression plays a role in soft tissue sarcoma (STS) chemoresistance as well as the regulatory mechanisms underlying its expression. The studies reported here show that Rad51 protein is overexpressed in a large panel of human STS specimens. Human STS cell lines showed increased Rad51 protein expression, as was also observed in nude rat STS xenografts. STS cells treated with doxorubicin exhibited up-regulation of Rad51 protein while arrested in the S-G(2) phase of the cell cycle. Treatment with anti-Rad51 small interfering RNA decreased Rad51 protein expression and increased chemosensitivity to doxorubicin. Because we previously showed that reintroduction of wild-type p53 (wtp53) into STS cells harboring a p53 mutation led to increased doxorubicin chemosensitivity, we hypothesized that p53 participates in regulating Rad51 expression in STS. Reintroduction of wtp53 into STS cell lines resulted in decreased Rad51 protein and mRNA expression. Using luciferase reporter assays, we showed that reconstitution of wtp53 function decreased Rad51 promoter activity. Deletion constructs identified a specific Rad51 promoter region containing a p53-responsive element but no p53 consensus binding site. Electrophoretic mobility shift assays verified activator protein 2 (AP2) binding to this region and increased AP2 binding to the promoter in the presence of wtp53. Mutating this AP2 binding site eliminated the wtp53 repressive effect. Furthermore, AP2 knockdown resulted in increased Rad51 expression. In light of the importance of Rad51 in modulating STS chemoresistance, these findings point to a potential novel strategy for molecular-based treatments that may be of relevance to patients burdened by STS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/1535-7163.MCT-06-0636 | DOI Listing |
Nat Chem Biol
January 2025
Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
The regressed arms of reversed replication forks exhibit structural similarities to one-ended double-stranded breaks and need to be protected against uncontrolled nucleolytic degradation. Here, we identify MSANTD4 (Myb/SANT-like DNA-binding domain-containing protein 4), a functionally uncharacterized protein that uniquely counters the replication protein A (RPA)-Bloom (BLM)/Werner syndrome helicase (WRN)-DNA replication helicase/nuclease 2 (DNA2) complex to safeguard reversed replication forks from detrimental degradation, independently of the breast cancer susceptibility proteins (BRCA1/2)-DNA repair protein RAD51 pathway. MSANTD4 specifically interacts with the junctions between single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) in DNA substrates harboring a 3' overhang, which resemble the structural features of regressed arms processed by WRN-DNA2.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Radiation Oncology, The Second Affiliated Hospital of Dalian Medical University, No. 467 of Zhongshan Road, Shahekou District, Dalian, 116023, China.
Objective: Cervical cancer is a common malignancy among women, and radiotherapy remains a primary treatment modality across all disease stages. However, resistance to radiotherapy frequently results in treatment failure, highlighting the need to identify novel therapeutic targets to improve clinical outcomes.
Methods: The expression of molecule interacting with CasL-2 (MICAL2) was confirmed in cervical cancer tissues and cell lines through western blotting (WB) and immunohistochemistry (IHC).
Nucleic Acids Res
January 2025
MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, No.866 Yuhangtang Road, 310058, Hangzhou, China.
Meiosis in mammalian oocytes is interrupted by a prolonged arrest at the germinal vesicle stage, during which oocytes have to repair DNA lesions to ensure genome integrity or otherwise undergo apoptosis. The FIRRM/FLIP-FIGNL1 complex dissociates RAD51 from the joint DNA molecules in both homologous recombination (HR) and DNA replication. However, as a type of non-meiotic, non-replicative cells, whether this RAD51-dismantling mechanism regulates genome integrity in oocytes remains elusive.
View Article and Find Full Text PDFGenes Cells
January 2025
Jiangsu Key Laboratory for Pathogens and Ecosystems, College of Life Sciences, Nanjing Normal University, Nanjing, China.
Serine-arginine protein kinases (SRPKs) play important roles in diverse biological processes such as alternative splicing and cell cycle. However, the functions of SRPKs in DNA damage response remain unclear. Here we characterized the function of SRPKs homolog Dsk1 in regulating DNA repair in the fission yeast Schizosaccharomyces pombe.
View Article and Find Full Text PDFSci Rep
January 2025
Reproductive Biology Laboratory, Centre for Reproductive Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, 1105AZ, The Netherlands.
Radiation therapy is a common treatment modality for lung cancer, and resistance to radiation can significantly affect treatment outcomes. We recently described that lung cancer cells that express more germ cell cancer genes (GC genes, genes that are usually restricted to the germ line) can repair DNA double-strand breaks more rapidly, show higher rates of proliferation and are more resistant to ionizing radiation than cells that express fewer GC genes. The gene encoding TRIP13 appeared to play a large role in this malignant phenotype.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!