In the microcirculation, longitudinal conduction of vasomotor responses provides an essential means of coordinating flow distribution among vessels in a complex network. Spread of current along the vessel axis can display a regenerative component, which leads to propagation of vasomotor signals over many millimeters; the ionic basis for the regenerative response is unknown. We examined the responses to 10 s of focal electrical stimulation (30 Hz, 2 ms, 30 V) of mouse cremaster arterioles to test the hypothesis that voltage-dependent Na(+) (Na(v)) and Ca(2+) channels might be activated in long-distance signaling in microvessels. Electrical stimulation evoked a vasoconstriction at the site of stimulation and a spreading, nondecremental conducted dilation. Endothelial damage (air bubble) blocked conduction of the vasodilation, indicating an involvement of the endothelium. The Na(v) channel blocker bupivacaine also blocked conduction, and TTX attenuated it. The Na(v) channel activator veratridine induced an endothelium-dependent dilation. The Na(v) channel isoforms Na(v)1.2, Na(v)1.6, and Na(v)1.9 were detected in the endothelial cells of cremaster arterioles by immunocytochemistry. These findings are consistent with the involvement of Na(v) channels in the conducted response. BAPTA buffering of endothelial cell Ca(2+) delayed and reduced the conducted dilation, which was almost eliminated by Ni(2+), amiloride, or deletion of alpha(1H) T-type Ca(2+) (Ca(v)3.2) channels. Blockade of endothelial nitric oxide synthase or Ca(2+)-activated K(+) channels also inhibited the conducted vasodilation. Our findings indicate that an electrically induced signal can propagate along the vessel axis via the endothelium and can induce sequential activation of Na(v) and Ca(v)3.2 channels. The resultant Ca(2+) influx activates endothelial nitric oxide synthase and Ca(2+)-activated K(+) channels, triggering vasodilation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpheart.01368.2006 | DOI Listing |
Cancer Cell Int
January 2025
Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
Background: Mounting evidence underline the relevance of macromolecular complexes in cancer. Integrins frequently recruit ion channels and transporters within complexes which behave as signaling hubs. A complex composed by β1 integrin, hERG1 K channel, the neonatal form of the Na channel Na 1.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Neurology, Yale School of Medicine, New Haven, CT 06520.
Pain impacts billions of people worldwide, but treatment options are limited and have a spectrum of adverse effects. The search for safe and nonaddictive pain treatments has led to a focus on key mediators of nociceptor excitability. Voltage-gated sodium (Nav) channels in the peripheral nervous system-Nav1.
View Article and Find Full Text PDFJ Gen Physiol
March 2025
Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS, USA.
Voltage-gated sodium (Nav) channels are pivotal for cellular signaling, and mutations in Nav channels can lead to excitability disorders in cardiac, muscular, and neural tissues. A major cluster of pathological mutations localizes in the voltage-sensing domains (VSDs), resulting in either gain-of-function, loss-of-function effects, or both. However, the mechanism behind this functional diversity of mutations at equivalent positions remains elusive.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
January 2025
The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; Peptide and small molecule drug R&D platform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, Hunan, China. Electronic address:
The gating process of voltage-gated sodium (Na) channels is extraordinary intrinsic and involves numerous factors, such as voltage-sensing domain (VSD), the N-terminus and C-terminus, and the auxiliary subunits. To date, the gating mechanism of Na channel has not been clearly elucidated. Na1.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555. Electronic address:
Voltage-gated Na+ (Nav) channels are the primary determinants of the action potential in excitable cells. Nav channels rely on a wide and diverse array of intracellular protein-protein interactions (PPIs) to achieve their full function. Glycogen synthase kinase 3 β (GSK3β) has been previously identified as a modulator of Nav1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!