The lipids of the topmost layer of the skin, the stratum corneum, represent the primary barrier to molecules penetrating the skin. One approach to overcoming this barrier for the purpose of delivery of active molecules into or via the skin is to employ chemical permeability enhancers, such as dimethylsulfoxide (DMSO). How these molecules exert their effect at the molecular level is not understood. We have investigated the interaction of DMSO with gel-phase bilayers of ceramide 2, the predominant lipid in the stratum corneum, by means of molecular dynamics simulations. The simulations satisfactorily reproduce the phase behavior and the known structural parameters of ceramide 2 bilayers in water. The effect of DMSO on the gel-phase bilayers was investigated at various concentrations over the range 0.0-0.6 mol fraction DMSO. The DMSO molecules accumulate in the headgroup region and weaken the lateral forces between the ceramides. At high concentrations of DMSO (> or =0.4 mol fraction), the ceramide bilayers undergo a phase transition from the gel phase to the liquid crystalline phase. The liquid-crystalline phase of ceramides is expected to be markedly more permeable to solutes than the gel phase. The results are consistent with the experimental evidence that high concentrations of DMSO fluidize the stratum corneum lipids and enhance permeability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1959535 | PMC |
http://dx.doi.org/10.1529/biophysj.107.104703 | DOI Listing |
J Biol Chem
December 2024
Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel. Electronic address:
The relationship between membrane proteins and the lipid constituents of the membrane bilayer depends on finely-tuned atomic interactions, which itself depends on the precise distribution of amino acids within the 3D structure of the protein. In this regard, tryptophan (Trp), one of the least abundant amino acids, is found at higher levels in transmembrane proteins where it likely plays a role in helping anchor them to the membrane. We now re-evaluate Trp distribution in membrane proteins using all known proteins in the Swiss-Prot database and confirm that it is somewhat higher (∼1.
View Article and Find Full Text PDFBiomater Res
November 2024
Key Laboratory of Emergency and Trauma of Ministry of Education, Key Laboratory of Haikou Trauma, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
Cartilage repair is the key to the treatment of joint-related injury. However, because cartilage lacks vessels and nerves, its self-repair ability is extremely low. Extracellular vesicles (EVs) are bilayer nanovesicles with membranes mainly composed of ceramides, cholesterol, phosphoglycerides, and long-chain free fatty acids, containing DNA, RNA, and proteins (such as integrins and enzymes).
View Article and Find Full Text PDFChem Phys Lipids
November 2024
Department of Pharmacy, Uppsala University, Uppsala 751 23, Sweden. Electronic address:
The stratum corneum (SC) plays the most important role in the absorption of topical and transdermal drugs. In this study, we developed a multi-layered SC model using coarse-grained molecular dynamics (CGMD) simulations of ceramides, cholesterol, and fatty acids in equimolar proportions, starting from two different initial configurations. In the first approach, all ceramide molecules were initially in the hairpin conformation, and the membrane bilayers were pre-formed.
View Article and Find Full Text PDFChem Phys Lipids
November 2024
Food Sciences, Department of Life Technologies, University of Turku, FI-20500, Turku, Finland. Electronic address:
Milk fat globule membrane (MFGM) promotes the lateral phase separation of milk lipids and stabilizes the fat globules in milk. The composition and structures of lipids have a significant impact on physicochemical properties of MFGM, which in turn influences the digestion and absorption of milk lipids. Phospholipids (PL), sphingolipids, and cholesterol are the major lipid constituents of MFGM.
View Article and Find Full Text PDFPflugers Arch
December 2024
Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001, Rehovot, Israel.
Research on sphingolipids has proliferated exponentially over the past couple of decades, as exemplified in the findings reported at the International Leopoldina Symposium on Lipid Signaling held in Frankfurt in late 2023. Most researchers in the field study how sphingolipids function in regulating a variety of cellular processes and, in particular, how they are dysregulated in numerous human diseases; however, I now propose that we implement a more holistic research program in our study of sphingolipids, which embraces a sense of awe and wonder at the complexities and beauty of sphingolipids and of sphingolipid metabolism. I will outline the chemical complexity of sphingolipids, their modes of interaction within the lipid bilayer, and their biosynthetic pathways.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!