Delta-crystallin is the major soluble protein in avian eye lenses with a structural role in light scattering. Dissociation and unfolding of the tetrameric protein in guanidinium chloride (GdmCl) can be sensitively monitored by the intrinsic tryptophan fluorescence. In this study refolding of GdmCl-denatured delta-crystallin was investigated. A marked hysteresis was observed while refolding by dilution of the 5 M GdmCl-denatured delta-crystallin. The secondary structure of the refolded protein was largely restored. However, monitoring intrinsic fluorescence of single tryptophan mutants indicated that the microenvironment of domain 1 (W74) was not restored. The region containing W169, which is close to the dimer interface, remained exposed following refolding. During refolding of the wild-type protein, dimeric, tetrameric, and aggregate forms were identified. The ratio of tetramer to dimer increased with time, as judged by gel-filtration chromatography and nondenaturing gel electrophoresis. However the observed levels of tetramer did not return to the same levels as observed before GdmCl treatment. The proportion of tetramer was significantly decreased in the N-25 deletion mutant and it did not increase with time. These results suggest that there is a kinetic barrier for assembly of dimers into tetramers. The consequence of this is that dimers refold to form aggregates. Aggregation seems to follow a nucleation mechanism with an apparent reaction order of 4.7+/-0.2, suggesting four or five monomers constitute the core structure of nucleus, which propagate to form high molecular weight aggregates. Addition of alpha-crystallin during refolding prevents aggregation. Thioflavin T and Congo red assays indicated a regular structure for the protein aggregates, which appear as hollow tubules packed into helical bundles. Aggregate formation was protein concentration dependent that progressed via two stages with rate constants of 0.0039+/-0.0006 and 0.00043+/-0.00003 s(-1), respectively. We propose that the N-terminal segment of delta-crystallin plays a critical role in proper double dimer assembly and also in the assembly of nucleus to aggregate formation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1929020PMC
http://dx.doi.org/10.1529/biophysj.107.104604DOI Listing

Publication Analysis

Top Keywords

aggregate formation
12
guanidinium chloride
8
gdmcl-denatured delta-crystallin
8
protein
6
delta-crystallin
5
refolding
5
kinetic refolding
4
refolding barrier
4
barrier guanidinium
4
chloride denatured
4

Similar Publications

Evaluating amyloid-beta aggregation and toxicity in transgenic Caenorhabditis elegans models of Alzheimer's disease.

Methods Cell Biol

January 2025

Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Camobi, Santa Maria, RS, Brazil.

Alzheimer's disease (AD) is the leading cause of dementia in the elderly, clinically characterized by memory loss, cognitive decline, and behavioral disturbances. Its pathogenesis is not fully comprehended but involves intracellular depositions of amyloid beta peptide (Aβ) and neurofibrillary tangles of hyperphosphorylated tau. Currently, pharmacological interventions solely slow the progression of symptoms.

View Article and Find Full Text PDF

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterized by a repeat of the cytosine-adenine-guanine trinucleotide (CAG) in the huntingtin gene (HTT). This results in the translation of a mutant huntingtin (mHTT) protein with an abnormally long polyglutamine (polyQ) repeat. The pathology of HD leads to neuronal cell loss, motor abnormalities, and dementia.

View Article and Find Full Text PDF

The ternary complex effectively prevents droplet aggregation, Ostwald ripening, and phase separation through its gel network, thereby demonstrating its capability in bioactive compound delivery. In this work, the influence of varying chickpea protein isolate (CPI) levels on the microstructure, gel characteristics, stability and functional properties of grape seed proanthocyanidin (GSP) and konjac gum (KGM) stabilized ternary complexes was investigated. Visual appearance indicated the formation of a non-stratified ternary complex as the CPI enhanced to 3-4 %.

View Article and Find Full Text PDF

Molecular mechanism of protein-lipid interactions in steamed egg gelation and deterioration: A quantitative proteomic study.

Int J Biol Macromol

January 2025

Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China. Electronic address:

Steamed egg (SE), a traditional egg dish, exhibits steaming time-dependent textural properties. This study investigated the molecular mechanisms underlying SE gel formation and deterioration through quantitative proteomics combined with physicochemical characterization. Results showed optimal gel formation at 11 min steaming, while prolonged steaming (23 min) led to gel cracking and sensory deterioration.

View Article and Find Full Text PDF

Protein aggregation, a major concern in biopharmaceutical quality control, can be accelerated by various stresses during clinical handling. This study investigated potential aggregation risk factors during dilution process with syringe handling for intravenous administration. Using γ-globulin and IgG solutions as surrogate models of antibody therapeutics, we examined the effects of high sliding speeds and piston operations of the syringe on protein aggregation during saline dilution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!