A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Influence of ethanol-diesel blended fuels on diesel exhaust emissions and mutagenic and genotoxic activities of particulate extracts. | LitMetric

This study was aimed at evaluating the influence of ethanol addition on diesel exhaust emissions and the toxicity of particulate extracts. The experiments were conducted on a heavy-duty diesel engine and five fuels were used, namely: E0 (base diesel fuel), E5 (5%), E10 (10%), E15 (15%) and E20 (20%), respectively. The regulated emissions (THC, CO, NOx, PM) and polycyclic aromatic hydrocarbon (PAH) emissions were measured, and Ames test and Comet assay, respectively, were used to investigate the mutagenicity and genotoxicity of particulate extracts. From the point of exhaust emissions, the introduction of ethanol to diesel fuel could result in higher brake specific THC (BSTHC) and CO (BSCO) emissions and lower smoke emissions, while the effects on the brake specific NOx (BSNOx) and particulate matters (BSPM) were not obvious. The PAH emissions showed an increasing trend with a growth of ethanol content in the ethanol-diesel blends. As to the biotoxicity, E20 always had the highest brake specific revertants (BSR) in both TA98 and TA100 with or without metabolizing enzymes (S9), while the lowest BSR were found in E5 except that of TA98-S9. DNA damage data showed a lower genotoxic potency of E10 and E15 as a whole.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2007.03.088DOI Listing

Publication Analysis

Top Keywords

exhaust emissions
12
particulate extracts
12
brake specific
12
diesel exhaust
8
emissions
8
diesel fuel
8
pah emissions
8
diesel
5
influence ethanol-diesel
4
ethanol-diesel blended
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!