Inactivation of glucose-6-phosphate dehydrogenase (G6PD) may contribute to vascular dysfunction in preeclampsia, and oxidative stress has been implicated in the pathogenesis of this disease. We have compared the susceptibility of erythrocytes and human umbilical vein endothelial cells (HUVEC) to oxidative stress in women with normotensive or preeclamptic pregnancies. The redox status of erythrocytes was also correlated with neutrophil-mediated superoxide (O(2)(.-)) production in women recruited to the "Vitamins in Preeclampsia" (VIP) trial. Erythrocytes and HUVEC from women with preeclampsia demonstrated impaired redox regulation and diminished response to glucose, detectable at 14-20 weeks gestation prior to onset of the clinical disease. Hexokinase and G6PD activities were decreased in erythrocytes and G6PD activity was decreased in HUVEC from preeclamptic pregnancies. Phorbol-ester-stimulated O(2)(.-) was enhanced in preeclamptic neutrophils. Impaired redox regulation in erythrocytes and HUVEC in preeclampsia may be due to diminished hexokinase and G6PD activities resulting from increased release of reactive oxygen species from activated neutrophils. Our findings provide the first evidence that decreased G6PD activity in preeclampsia is associated with impaired redox regulation in erythrocytes and fetal endothelial cells. The deficiency in G6PD in preeclampsia potentially accounts for the lack of protection against oxidative stress afforded by antioxidant vitamin C/E supplementation in the VIP trial.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2007.02.032DOI Listing

Publication Analysis

Top Keywords

endothelial cells
12
oxidative stress
12
impaired redox
12
redox regulation
12
glucose-6-phosphate dehydrogenase
8
redox status
8
status erythrocytes
8
erythrocytes fetal
8
fetal endothelial
8
preeclamptic pregnancies
8

Similar Publications

Aims: Bone marrow mononuclear cells (BM-MNCs) are a rich source of hematopoietic stem cells that have been widely used in experimental therapies for patients with various diseases, including fractures.Activation of angiogenesis is believed to be one of the major modes of action of BM-MNCs; however, the essential mechanism by which BM-MNCs activate angiogenesis remains elusive. This study aimed to demonstrate that BM-MNCs promote bone healing by enhancing angiogenesis through direct cell-to-cell interactions via gap junctions, in addition to a previously reported method.

View Article and Find Full Text PDF

Urinary obstruction causes injury to the renal medulla, impairing the ability to concentrate urine, and increasing the risk of progressive kidney disease. However, the regenerative capacity of the renal medulla after reversal of obstruction is poorly understood. To investigate this, we developed a mouse model of reversible urinary obstruction.

View Article and Find Full Text PDF

Purpose: To investigate the effect of Rho-associated protein kinase (ROCK) inhibitor Y27632 on bioenergetic capacity and resilience of corneal endothelial cells (CECs) under metabolic stress.

Methods: Bovine CECs (BCECs) were treated with Y27632 and subjected to bioenergetic profiling using the Seahorse XFp Analyzer. The effects on adenosine triphosphate (ATP) production through oxidative phosphorylation and glycolysis were measured.

View Article and Find Full Text PDF

Microfluidic vessel-on-chip platform for investigation of cellular defects in venous malformations and responses to various shear stress and flow conditions.

Lab Chip

January 2025

Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5000, FI-90014 Oulu, Finland.

A novel microfluidic platform was designed to study the cellular architecture of endothelial cells (ECs) in an environment replicating the 3D organization and flow of blood vessels. In particular, the platform was constructed to investigate EC defects in slow-flow venous malformations (VMs) under varying shear stress and flow conditions. The platform featured a standard microtiter plate footprint containing 32 microfluidic units capable of replicating wall shear stress (WSS) in normal veins and enabling precise control of shear stress and flow directionality without the need for complex pumping systems.

View Article and Find Full Text PDF

is frequently isolated during prosthetic joint infections (PJIs). Unlike , its internalization and persistence within cells are controversial. We aimed to determine whether internalization is involved in the pathophysiology of PJIs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!