During pregnancy body weight, and particularly adiposity, increase, due to hyperphagia rather than decreased energy metabolism. These physiological adaptations provide the growing fetus(es) with nutrition and prepare the mother for the metabolically-demanding lactation period following birth. Mechanisms underlying the hyperphagia are still poorly understood. Although the peripheral signals that drive appetite and satiety centers of the brain are increased in pregnancy, the brain may become insensitive to their effects. For example, leptin secretion increases but hypothalamic resistance to leptin actions develops. However, several adaptations in hypothalamic neuroendocrine systems may converge to increase ingestive behavior. Oxytocin is one of the anorectic hypothalamic neuropeptides. Oxytocin neurons, both centrally-projecting parvocellular oxytocin neurons and central dendritic release of oxytocin from magnocellular neurons, may play a key role in regulating energy intake. During feeding in non-pregnant rats, magnocellular oxytocin neurons, especially those in the supraoptic nucleus, become strongly activated indicating their imminent role in meal termination. However, in mid-pregnancy the excitability of these neurons is reduced, central dendritic oxytocin release is inhibited and patterns of oxytocin receptor binding in the brain alter. Our recent data suggest that lack of central oxytocin action may partly contribute to maternal hyperphagia. However, although opioid inhibition is a major factor in oxytocin neuron restraint during pregnancy and opioids enhance food intake, an increase in opioid orexigenic actions were not observed. While changes in several central input pathways to oxytocin neurons are likely to be involved, the high level of progesterone secretion during pregnancy is probably the ultimate trigger for the adaptations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.physbeh.2007.04.012DOI Listing

Publication Analysis

Top Keywords

oxytocin neurons
16
oxytocin
11
food intake
8
central dendritic
8
neurons
6
pregnancy
5
neuroendocrine mechanisms
4
mechanisms change
4
change food
4
intake pregnancy
4

Similar Publications

Interoception broadly refers to awareness of one's internal milieu. Although the importance of the body-to-brain communication that underlies interoception is implicit, the vagal afferent signalling and corresponding brain circuits that shape perception of the viscera are not entirely clear. Here, we use mice to parse neural circuits subserving interoception of the heart and gut.

View Article and Find Full Text PDF

Oxytocin and Neuroscience of Lactation: Insights from the Molecular Genetic Approach.

Neurosci Res

January 2025

RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan. Electronic address:

In mammals, lactation is essential for the health and growth of infants and supports the formation of the mother-infant bond. Breastfeeding is mediated by the neurohormone oxytocin (OT), which is released into the bloodstream in a pulsatile manner from OT neurons in the hypothalamus to promote milk ejection into mammary ducts. While classical studies using anesthetized rats have illuminated the activity patterns of putative OT neurons during breastfeeding, the molecular, cellular, and neural circuit mechanisms driving the synchronous pulsatile bursts of OT neurons in response to nipple stimulation remain largely elusive.

View Article and Find Full Text PDF

Empathy plays a crucial role in social communication and the perception of affective states and behavioral processes. In this study, we observed that empathic interaction with a mouse experiencing pain resulted in decreased mechanical pain thresholds and anxiety-like behaviors in its bystander, though the underlying mechanisms remain unknown. We demonstrated that CD38 expression in the paraventricular nucleus (PVN) was upregulated during empathic pain, and the pain and emotions of CD38 knockout (CD38KO) mice as bystanders were not affected.

View Article and Find Full Text PDF

Postpartum depression (PPD) affects up to 20% of new mothers and has adverse consequences for the well-being of both mother and child. Exposure to stress during pregnancy as well as dysregulation in the mesolimbic dopamine (DA) reward system and its upstream modulator oxytocin (OT) have been independently linked to PPD. However, no studies have directly examined DA or OT signaling in the postpartum brain after gestational stress.

View Article and Find Full Text PDF

Integrative studies of diverse neuronal networks that govern social behavior are hindered by a lack of methods to record neural activity comprehensively across the entire brain. The recent development of the miniature fish Danionella cerebrum as a model organism offers one potential solution, as the small size and optical transparency of these animals make it possible to visualize circuit activity throughout the nervous system. Here, we establish the feasibility of using Danionella as a model for social behavior and socially reinforced learning by showing that adult fish exhibit strong affiliative tendencies and that social interactions can serve as the reinforcer in an appetitive conditioning paradigm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!