Aim: To generate complex surrogate tissue by transplanting 3D scaffolds seeded with human embryonic stem cells (hESCs) between the liver lobules of severe combined immunodeficient (SCID) mice and to assess the teratoma-forming potential.

Materials & Methods: 3D poly-(lactic-co-glycolic acid) (PLGA) scaffolds coated with laminin were seeded with hESCs and then transplanted between the liver lobules of SCID mice. After a period of in vivo differentiation, the scaffolds were retrieved and analyzed using reverse transcription polymerase chain reaction, immunofluorescent staining and scanning electron microscopy.

Results: A proportion of the hESCs within the scaffolds differentiated into cells that produced proteins characteristic of specific tissues, including endoderm and pancreatic markers glucogon-like peptide-1 receptor, islet amyloid polypeptide and Insulin. Markers of hepatic and neuronal lineages were also investigated. Major matrix proteins abundant in multiple tissue types, including collagen I, laminin and collagen IV, were found to be profuse within the scaffold pores. Transplantation of the seeded scaffolds between liver lobules also resulted in extensive vascularization both from host blood vessel incursion and the differentiation of hESCs into endothelial progenitor cells. An investigation of teratoma-forming potential demonstrated that transplantation of 3D scaffolds seeded with hESCs will, under certain conditions, lead to the growth of teratomas.

Discussion: Transplantation of 3D scaffolds seeded with hESCs between liver lobules resulted in the development of surrogate tissue containing cells that produced proteins representing the pancreatic, hepatic and neuronal lineages, the assembly of an extracellular matrix structure and the formation of a vasculature. hESCs seeded within 3D scaffolds and transplanted into SCID mice were capable of forming teratomas. However, the formation and progression of teratoma growth is shown to be dependant on both the site of transplantation and the treatment of cells prior to transplantation.

Download full-text PDF

Source
http://dx.doi.org/10.2217/17460751.2.3.289DOI Listing

Publication Analysis

Top Keywords

scaffolds seeded
16
liver lobules
16
transplantation scaffolds
12
surrogate tissue
12
scid mice
12
seeded hescs
12
seeded human
8
human embryonic
8
embryonic stem
8
stem cells
8

Similar Publications

Evaluation of Cartilage-Like Matrix Formation in a Nucleus Pulposus-Derived Cartilage Analog Scaffold.

J Biomed Mater Res B Appl Biomater

January 2025

The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina, USA.

The formation of fibrocartilage in microfracture (MFX) severely limits its long-term outlook. There is consensus in the scientific community that the placement of an appropriate scaffold in the MFX defect site can promote hyaline cartilage formation and improve therapeutic benefit. Accordingly, in this work, a novel natural biomaterial-the cartilage analog (CA)-which met criteria favorable for chondrogenesis, was evaluated in vitro to determine its candidacy as a potential MFX scaffold.

View Article and Find Full Text PDF

Digital light processing printing of non-modified protein-only compositions.

Mater Today Bio

February 2025

Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.

This study explores the utilization of digital light processing (DLP) printing to fabricate complex structures using native gelatin as the sole structural component for applications in biological implants. Unlike approaches relying on synthetic materials or chemically modified biopolymers, this research harnesses the inherent properties of gelatin to create biocompatible structures. The printing process is based on a crosslinking mechanism using a di-tyrosine formation initiated by visible light irradiation.

View Article and Find Full Text PDF

Bioabsorbable textile scaffolds are promising for bone tissue engineering applications. Their tuneable, porous, fibre based architecture resembles that of native extracellular matrix, and they can sustain tissue growth while being gradually absorbed in the body. In this work, immortalized mouse calvaria preosteoblast MC3T3-E1 cells were cultured in vitro on two warp-knitted bioabsorbable spacer fabric scaffolds made of poly(lactic acid) (PLA) and poly-4-hydroxybutyrate (P4HB), to investigate their osteogenic properties.

View Article and Find Full Text PDF

Stem Cells Within Three-Dimensional-Printed Scaffolds Facilitate Airway Mucosa and Bone Regeneration and Reconstruction of Maxillary Defects in Rabbits.

Medicina (Kaunas)

December 2024

Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.

: Current craniofacial reconstruction surgical methods have limitations because they involve facial deformation. The craniofacial region includes many areas where the mucosa, exposed to air, is closely adjacent to bone, with the maxilla being a prominent example of this structure. Therefore, this study explored whether human neural-crest-derived stem cells (hNTSCs) aid bone and airway mucosal regeneration during craniofacial reconstruction using a rabbit model.

View Article and Find Full Text PDF

Bone tissue regeneration can be affected by various architectonical features of 3D porous scaffold, for example, pore size and shape, strut size, curvature, or porosity. However, the design of additively manufactured structures studied so far was based on uniform geometrical figures and unit cell structures, which often do not resemble the natural architecture of cancellous bone. Therefore, the aim of this study was to investigate the effect of architectonical features of additively manufactured (aka 3D printed) titanium scaffolds designed based on microtomographic scans of fragments of human femurs of individuals of different ages on in vitro response of human bone-derived mesenchymal stem cells (hMSC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!