The mechanical performance of plasticized wheat gluten (WG) materials was significantly modified through the formation of different chemical and network structures with alkoxysilanes. The epoxy-functionalized alkoxysilanes were grafted to segments of WG, and then the condensation reactions between alkoxysilane segments occurred during thermal processing to form WG-siloxane networks. The mechanical properties and molecular motions of the networks were dependent on the amount and type of alkoxysilanes applied. A lower amount of alkoxysilanes caused the alkoxysilane molecules to predominately graft onto WG chains without forming linkages between WG segments, which produced an additional plasticizing effect on the WG systems with a longer elongation value and weaker tensile strength at relative humidity (RH) = 50% as compared to the WG system. However, such grafting improved the hydrostability of the materials and generated an improvement in tensile strength at RH = 85%. Increasing the amount of alkoxysilanes in the systems led to the formation of cross-linked WG-siloxane networks via linkages between alkoxysilane segments. Remarkable strength improvement was obtained for the networks with elongation values still higher than the original plasticized WG due to the flexible nature of the siloxane components. A more significant strength improvement was obtained for the WG-SiA systems at both RH = 50% and 85%, where SiA could form three-dimensional networks from siloxane condensation and generate highly cross-linked network structures with relatively low mobility. For WG-SiB systems, SiB could only form linear linkages, and the higher mobility of the SiB phase caused the systems to display a lower strength improvement with a longer elongation value.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bm070290c | DOI Listing |
Asian Pac J Allergy Immunol
December 2024
Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, T hailand.
This part reviews the management of chronic cough and proposes a management algorithm. Despite proven improvements in quality of life following chronic cough treatment, a clear understanding of the disease and the evidence for the efficacy of some treatments remain vague. Eight key questions regarding the treatment in the uncertain areas were systematically addressed based on the PICO framework and applying the GRADE system for evidence synthesis to provide the strength of recommendation and quality of evidence for key questions, with narrative components for the description of other chronic cough treatment including non-pharmacological therapy.
View Article and Find Full Text PDFCrit Rev Anal Chem
January 2025
Department of Chemistry, University of Delhi, New Delhi, India.
Heavy metal pollution is a major environmental and health problem due to the toxicity and persistence of metals such as lead, mercury, cadmium, and arsenic in water, soil, and air. Advances in sensor technology have significantly improved the detection and quantification of heavy metals, providing real-time monitoring and mitigation tools. This review explores recent developments in heavy metal detection, focusing on innovative uses of immobilized chromogenic reagents, nanomaterials, perovskites, and nanozymes.
View Article and Find Full Text PDFEur J Appl Physiol
January 2025
Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, Justus Liebig University Giessen, Kugelberg 62, 35394, Giessen, Germany.
Purpose: This study investigated elite German athletes to (1) assess their serum 25(OH)D levels and the prevalence of insufficiency, (2) identify key factors influencing serum 25(OH)D levels, and (3) analyze the association between serum 25(OH)D levels and handgrip strength.
Methods: In this cross-sectional study, a total of 474 athletes (231 female), aged 13-39 years (mean 19.3 years), from ten Olympic disciplines were included.
Sci Rep
January 2025
Department of Sport Injuries and Corrective Exercises, Faculty of Physical Education and Sport Sciences, Shahid Bahonar University of Kerman, Kerman, Iran.
Individuals with intellectual disabilities (ID) often exhibit lower levels of physical fitness compared to the general population, including reduced strength, endurance, flexibility, and coordination. Dynamic neuromuscular stabilization (DNS) training can potentially improve the performance of adults with ID caused by weak motor skills due to a lack of desirable nerve growth during childhood and before puberty. Also, DNS training proposed to improve physical fitness in this population, but the effectiveness and durability of DNS training on specific fitness components have not been well-established.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China.
Altitude training has been widely adopted. This study aimed to establish a mice model to determine the time point for achieving the best endurance at the lowland. C57BL/6 and BALB/c male mice were used to establish a mice model of hypoxic training with normoxic training mice, hypoxic mice, and normoxic mice as controls.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!