The early stages of phase evolution, not available for nanometer polymer blend films spin-cast from solutions of incompatible mixtures, have been examined for films prepared from nanoparticles of deuterated polystyrene/ poly(methyl methacrylate) blends (1:1 mass fraction of dPS/PMMA) with PS-PMMA diblock copolymer additives. The initial phase arrangement, confined to the size of nanoparticles, has provided the homogeneity of the initial film composition. The early stages of structure formation, promoted by annealing and traced with atomic and lateral force microscopy (AFM, LFM) as well as secondary ion mass spectroscopy (SIMS), resulted in bilayers, observed commonly for as-prepared solvent-cast blends. The initiated capillary instability of the upper dPS-rich layer depended on copolymer additives, which enhanced the lateral structures pinning the dewetting process.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la062844nDOI Listing

Publication Analysis

Top Keywords

polymer blend
8
early stages
8
copolymer additives
8
structure evolution
4
evolution layers
4
layers polymer
4
blend nanoparticles
4
nanoparticles early
4
stages phase
4
phase evolution
4

Similar Publications

Ion beam induced secondary electron tomography of acrylonitrile-styrene-acrylate/polycarbonate polymer blends for fused filament fabrication and injection moulding.

Sci Rep

January 2025

Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Orgánica, IMEYMAT, Universidad de Cádiz, Campus Río San Pedro, 11510, Puerto Real, Cádiz, Spain.

Polymer blending is an interesting strategy to broaden the combination of properties available for a variety of applications. To understand the behaviour of the new materials obtained as well as the influence of the fabrication parameters used, methods to analyse the distribution of polymers in the blend with resolution below the micrometer are required. In this work, we demonstrate the capability of focused ion beam (FIB) tomography to provide 3D information of the polymer distribution in objects obtained by blending acrylonitrile-styrene-acrylate (ASA) with polycarbonate (PC) (50 wt%), fabricated by Fused Filament Fabrication (FFF) and by Injection Moulding (IM).

View Article and Find Full Text PDF

Enhanced production, functionalization, and applications of polyhydroxyalkanoates from organic waste: A review.

Int J Biol Macromol

January 2025

Department of Chemical and Environmental Engineering and Pro-Vice-Chancellor (Planning & Resources), University of Mauritius, Reduit, Mauritius.

Polyhydroxyalkanoates (PHAs) represent a promising class of biodegradable polyesters synthesized by various microorganisms as energy storage compounds. Their versatility and environmental friendliness make them potential candidates for replacing conventional plastics across numerous applications. However, challenges such as limited mechanical properties, high production costs, and thermal instability have hindered their widespread adoption.

View Article and Find Full Text PDF

Antimicrobial biodegradable packaging films from phosphorylated starch: A sustainable solution for plastic waste.

Carbohydr Res

January 2025

Institute of Integrated & Honors Studies, Kurukshetra University, Kurukshetra, 136119, Haryana, India. Electronic address:

This study focused on developing biodegradable packaging films based on starch as an alternative to non-biodegradable such as petroleum-derived synthetic polymers. To improve its physicochemical properties, potato starch was chemically modified through phosphorylation. Starch phosphorylation was carried out using cyclic 1,3-propanediol phosphoryl chloride (CPPC), produced phosphorylated starch (PS), and analyzed using Fourier transform infrared (FT-IR), X-ray diffraction (XRD), Nuclear magnetic resonance (NMR), and Thermogravimetric analysis (TGA).

View Article and Find Full Text PDF

Selective Depolymerization for Sculpting Polymethacrylate Molecular Weight Distributions.

J Am Chem Soc

January 2025

George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States.

Chain-end reactivation of polymethacrylates generated by reversible-deactivation radical polymerization (RDRP) has emerged as a powerful tool for triggering depolymerization at significantly milder temperatures than those traditionally employed. In this study, we demonstrate how the facile depolymerization of poly(butyl methacrylate) (PBMA) can be leveraged to selectively skew the molecular weight distribution (MWD) and predictably alter the viscoelastic properties of blended PBMA mixtures. By mixing polymers with thermally active chain ends with polymers of different molecular weights and inactive chain ends, the MWD of the blends can be skewed to be high or low by selective depolymerization.

View Article and Find Full Text PDF

The side-chain directions in nonfullerene acceptors (NFAs) strongly influence the intermolecular interactions in NFAs; however, the influence of these side chains on the morphologies and charge carrier dynamics of Y6-based acceptors remains underexplored. In this study, we synthesize four distinct Y6-based acceptors, i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!