Xanthine oxidase (XO) and total oxidase plus dehydrogenase (XO+XDH) activities from rat liver were measured in the presence or absence of adenine in extracts prepared with or without DTT/PMSF in homogenization buffer. Presence of adenine in extracts, prepared with or without DTT/PMSF, caused a 45-60% decrease in XO and XO+XDH activities. Removal of adenine by dialysis from extracts prepared with or without DTT/PMSF resulted in the recovery of XO and XO+XDH activities to almost their pre-dialysis control levels. Enzyme activity after 24hr storage at -20 degrees C depended on the presence or absence of DTT/PMSF and adenine, with both XO and XO+XDH activities being lower in extracts with the combined presence of DTT/PMSF and adenine. Incubation of extracts at 37 degrees C for 30 minutes resulted in increased XO and XO+XDH activities, however, adenine-treated samples did not differ from their pre-incubation activities. The molecular mass of the enzyme from control and adenine-treated extracts was unchanged (300 kDa). Adenine-treated extracts prepared with or without DTT/PMSF showed higher D/O ratios in all post-dialysis samples when compared with their pre-dialysis ratios. The results suggest that adenine may play a role in preventing the dehydrogenase to oxidase conversion during extract preparation, storage, overnight dialysis and heat treatment.
Download full-text PDF |
Source |
---|
Biochem Biophys Res Commun
January 2025
Department of Internal Medicine 1, Shimane University Faculty of Medicine, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan; The Center for Integrated Kidney Research and Advance, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo, 693-8501, Japan. Electronic address:
Inhibition of xanthine oxidoreductase (XOR) was shown to ameliorate the stroke susceptibility in the stroke-prone spontaneously hypertensive rat (SHRSP), suggesting hyperuricemia had a pathological role in this rat model. In this study, we thus aimed to explore mechanisms inducing hyperuricemia in SHRSP. XOR is known to have two forms, xanthine dehydrogenase (XDH) as the prototype and xanthine oxidase (XO) as the converted form through cleavage of a peptide bond or through formation of disulfide bonds in the enzyme.
View Article and Find Full Text PDFArthritis Res Ther
December 2024
Department of Emergency Medicine, Rhode Island Hospital, Providence, RI, USA.
Background: Synovial macrophages (SMs) are important effectors of joint health and disease. A novel Cx3CR1 + TREM2 + SM population expressing the tight junction protein claudin-5, was recently discovered in synovial lining. Ablation of these SMs was associated with onset of arthritis.
View Article and Find Full Text PDFActa Pharm Sin B
August 2024
West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital/West China Medical School, Sichuan University, Chengdu 610041, China.
Acute pancreatitis (AP) is a potentially fatal condition with no targeted treatment options. Although inhibiting xanthine oxidase (XO) in the treatment of AP has been studied in several experimental models and clinical trials, whether XO is a target of AP and what its the main mechanism of action is remains unclear. Here, we aimed to re-evaluate whether XO is a target aggravating AP other than merely generating reactive oxygen species that trigger AP.
View Article and Find Full Text PDFJHEP Rep
August 2024
Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China.
Background & Aims: There are no studies investigating the direct effects of elevated xanthine oxidase (XO) on lipid metabolism disorders. Here, we aimed to clarify the role of XO in lipid metabolism in a prospective cohort study and elucidate the underlying mechanisms.
Methods: The association between serum XO activity and metabolic associated steatotic liver disease (MASLD) was examined in Cox proportional hazard models in a population-based cohort of 3,358 participants (20-75 years) at baseline.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!