The authors developed, built, and tested in vivo a completely implanted total artificial heart (TAH) system. The system used a reduced size version of a roller screw energy converter and mating sac blood pumps. The motor drive, pumps, and a compliance chamber were implanted intrathoracically. A canister containing controlling electronics and an emergency battery was implanted in the abdomen. The secondary coil of an inductive energy transmission and telemetry system was placed over the ribs. The system was implanted in three calves, that survived 0.5-13 days with the system. The system maintained safe left atrial pressures and adequate cardiac outputs during each animal's entire course.

Download full-text PDF

Source

Publication Analysis

Top Keywords

total artificial
8
artificial heart
8
system system
8
system
7
completely implantable
4
implantable total
4
heart system
4
system authors
4
authors developed
4
developed built
4

Similar Publications

Ultrasound is a primary diagnostic tool commonly used to evaluate internal body structures, including organs, blood vessels, the musculoskeletal system, and fetal development. Due to challenges such as operator dependence, noise, limited field of view, difficulty in imaging through bone and air, and variability across different systems, diagnosing abnormalities in ultrasound images is particularly challenging for less experienced clinicians. The development of artificial intelligence (AI) technology could assist in the diagnosis of ultrasound images.

View Article and Find Full Text PDF

Assessment of deep learning technique for fully automated mandibular segmentation.

Am J Orthod Dentofacial Orthop

February 2025

Department of Orthodontics, Faculty of Dentistry, Çanakkale Onsekiz Mart University, Çanakkale, Turkey.

Introduction: This study aimed to assess the precision of an open-source, clinician-trained, and user-friendly convolutional neural network-based model for automatically segmenting the mandible.

Methods: A total of 55 cone-beam computed tomography scans that met the inclusion criteria were collected and divided into test and training groups. The MONAI (Medical Open Network for Artificial Intelligence) Label active learning tool extension was used to train the automatic model.

View Article and Find Full Text PDF

Mixed reality for preoperative planning and intraoperative assistance of surgical correction of complex congenital heart defects.

J Thorac Cardiovasc Surg

January 2025

Division of Cardiology, The Hospital for Sick Children, Toronto, ON, Canada; Center for Image Guided Innovation and Therapeutic Intervention, The Hospital for Sick Children, Toronto, ON, Canada.

Objectives: Mixed reality (MixR) is an innovative visualization tool that presents virtual elements in a real-world environment, enabling real-time interaction between the user and the combined digital/physical reality. We aimed to explore the feasibility of MixR in enhancing preoperative planning and intraoperative guidance for the correction of various complex congenital heart defects (CHDs).

Methods: Patients underwent cardiac computed tomography or cardiac magnetic resonance and segmentation of digital imaging and communications in medicine (DICOM) images was performed.

View Article and Find Full Text PDF

Introduction: Gender disparities exist in nonresearch industry payments to U.S. physicians, but detailed analyses specific to surgeons are limited.

View Article and Find Full Text PDF

Timed artificial insemination (TAI) is a technology widely used in cattle production based on controlling ovarian follicular growth. This study analyzed a large database aiming to determine the influence of several intrinsic and extrinsic female factors, as well as their interactions to determine risk factors and produce prediction ability in beef cattle. A total of 1 832 999 TAIs conducted on 2 002 farms across South American countries were considered for the analysis, including 15 main fixed effects or interactions in the statistical model, in addition to five random effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!