To improve toxicity estimates from sublethal exposures to chemical warfare nerve agents (CWNA), it is necessary to generate mathematical models of the absorption, distribution, and elimination of nerve agents. However, current models are based on representative data sets generated with different routes of exposure and in different species and are designed to interpolate between limited laboratory data sets to predict a wide range of possible human exposure scenarios. This study was performed to integrate CWNA sublethal toxicity data in male Duncan Hartley guinea pigs. Specific goal was to compare uptake and clearance kinetics of different sublethal doses of sarin (either 0.1 x or 0.4 x LC50) in blood and tissues of guinea pigs exposed to agent by acute whole-body inhalation exposure after the 60-min LC50 was determined. Arterial catheterization allowed repeated blood sampling from the same animal at various time periods. Blood and tissue levels of acetylcholinesterase, butyrylcholinesterase, and regenerated sarin (rGB) were determined at various time points during and following sarin exposure. The following pharmacokinetic parameters were calculated from the graph of plasma or RBC rGB concentration versus time: time to reach the maximal concentration; maximal concentration; mean residence time; clearance; volume of distribution at steady state; terminal elimination-phase rate constant; and area under plasma concentration time curve extrapolated to infinity using the WinNonlin analysis program 5.0. Plasma and RBC t(1/2) for rGB was also calculated. Data will be used to develop mathematical model of absorption and distribution of sublethal sarin doses into susceptible tissues.

Download full-text PDF

Source
http://dx.doi.org/10.1080/08958370701353296DOI Listing

Publication Analysis

Top Keywords

inhalation exposure
8
nerve agents
8
absorption distribution
8
data sets
8
guinea pigs
8
plasma rbc
8
maximal concentration
8
time
6
sublethal
5
exposure
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!