Little is known concerning the contributions of oxidative phosphorylation (OxPhos), anaerobic glycolytic rate (AnGly), maximum creatine kinase (CK) activity, and metabolic economy (ME) on fatigue resistance. The purpose of this study was to model fatigue using muscle tissue metabolic measures during a maximal short-duration isometric contraction. Muscle metabolic function was measured with [31P]-magnetic resonance spectroscopy (MRS) in 54 premenopausal women (age: 33.8+/-6.3 y) while they performed 100% isometric plantar flexions. Multiple regression analysis revealed that all metabolic variables were independent predictors of fatigue resistance after adjusting for maximum isometric force generated (R2=0.56). ME accounted for the largest portion (36%) of overall shared variance. OxPhos accounted for the most shared variance of the three energy systems. These results support previous findings that OxPhos, AnGly, CK, and ME all contribute to fatigue resistance over a short duration. Additionally, the continued activity of CK at the end of 90 s of maximal exercise lends support to the concept of a CK shuttle facilitating energy transfer within the mitochondria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1139/H06-117 | DOI Listing |
Int J Biol Macromol
January 2025
Anhui Key Laboratory of Advanced Building Materials, Anhui Jianzhu University, Hefei 230022, China.
A styrene-glycidylmethacrylate-1-allyl-3-vinylimidazole epoxy functionalized ionomer (EFI) was synthesized, and the EFI and carbon nanotubes (CNTs) were co-introduced into poly(lactide)/poly(butylene-adipate-co-terephtalate) (PLA/PBAT) blends to fabricate high performance composites with excellent mechanical properties, fatigue-resistance and dielectric properties. It is revealed that EFI can improve the interaction force between PLA and PBAT by inducing the interfacial crosslink reaction, thereby improving the melt strength of the samples. EFI can also refine the dispersion of CNT in the composites owing to the non-covalent force between EFI and CNT, promote the formation of filler network inside composites, which is demonstrated by DMA and rheological test results.
View Article and Find Full Text PDFJ Strength Cond Res
January 2025
School of Behavioural and Health Sciences, Australian Catholic University, Brisbane, Australia.
Cowley, N, Nicholson, V, Timmins, R, Munteanu, G, Wood, T, García-Ramos, A, Owen, C, and Weakley, J. The effects of percentage-based, rating of perceived exertion, repetitions in reserve, and velocity-based training on performance and fatigue responses. J Strength Cond Res XX(X): 000-000, 2024-This study assessed the effects of percentage-based training (%1RM), rating of perceived exertion (RPE), repetitions in reserve (RIR), and velocity-based training (VBT) on (a) acute kinematic outputs, perceptions of effort, and changes in neuromuscular function during resistance training; and (b) neuromuscular fatigue and perceptions of soreness 24 hours after exercise.
View Article and Find Full Text PDFExp Physiol
January 2025
Division of Sport, Health and Exercise Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK.
Assessment of diaphragm function and fatigue typically relies on the measurement of transdiaphragmatic pressure (P). Although P serves as an index of diaphragm force output, it provides limited information regarding the ability of the muscle to shorten and generate power. We asked whether ultrasonography, combined with P, could be used to quantify changes in diaphragm function attributable to fatigue.
View Article and Find Full Text PDFFood Res Int
January 2025
Key Laboratory of Product Packaging and Logistics, Packaging Engineering Institute, College of Packaging Engineering, Jinan University, Qianshan Road 206, Zhuhai 519070, Guangdong Province, China. Electronic address:
Hydrogel indicators promise to monitor food spoilage, but their poor mechanics can cause defects in transport. Herein, a novel zwitterionic double network (DN) hydrogel was developed by polymerizing arylamide and sulfobetaine methacrylate in an alginate-Ca system. This hydrogel exhibited enhanced mechanical properties, including a maximum 2087 % breaking elongation and 135 ± 12 kJ/m toughness, significantly outperforming the current zwitterionic DN hydrogels, which typically exhibit less than 1800 % breaking elongation, capable of supporting 150 g-136 times its own weight.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Materials & Chemistry Architecture, Anhui Agricultural University, Anhui Healthy Sleep Home Furnishings Engineering Research Center, Hefei 230036, China. Electronic address:
Carbon aerogels, characterized by their high porosity and superior electrical performance, present significant potential for the development of highly sensitive pressure sensors. However, facile and cost-effective fabrication of biomass-based carbon aerogels that concurrently possess high sensitivity, high elasticity, and excellent fatigue resistance remains a formidable challenge. Herein, a piezoresistive sensor with a layered network microstructure (BCNF-rGO-CS) was successfully fabricated using bamboo nanocellulose fiber (BCNF), chitosan (CS), and graphene oxide (GO) as raw materials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!