A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of high-salt diet on vascular relaxation and oxidative stress in mesenteric resistance arteries. | LitMetric

This study tested the hypothesis that superoxide levels are elevated in isolated mesenteric resistance arteries (100-300 microm) from rats fed a short-term high-salt (HS) diet (4% NaCl for 3 days) compared to controls fed a low-salt (LS) diet (0.4% NaCl). Vascular relaxation induced by the superoxide dismutase mimetic tempol (4-hydroxytetramethylpiperidine-1-oxyl), the NADPH oxidase inhibitor apocynin and the xanthine/xanthine oxidase inhibitor oxypurinol was significantly larger in mesenteric arteries from animals fed HS diet compared to arteries from animals fed LS diet. Basal superoxide levels assessed via dihydroethidine (DHE) fluorescence were significantly elevated in arteries from rats fed HS diet, and were reduced by tempol, apocynin and oxypurinol, but not by L-NAME. Basal and methacholine-induced NO production (assessed by DAF-2T fluorescence) was significantly reduced in arteries from rats fed HS diet versus arteries from rats on LS diet. Impaired methacholine-induced NO release and vascular relaxation were restored by tempol and apocynin, but not by oxypurinol. These data suggest that the elevated production of superoxide by NADPH oxidase and xanthine/xanthine oxidase contribute to elevated basal superoxide levels, reduced NO release and impaired vascular relaxation in mesenteric resistance arteries of rats fed HS diet.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000102955DOI Listing

Publication Analysis

Top Keywords

fed diet
20
vascular relaxation
16
rats fed
16
arteries rats
16
mesenteric resistance
12
resistance arteries
12
superoxide levels
12
high-salt diet
8
arteries
8
diet
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!