AI Article Synopsis

Article Abstract

Nicotine and its derivatives, by binding to nicotinic acetylcholine receptors (nAChR) on bronchial epithelial cells, can regulate cellular proliferation and apoptosis via activating the Akt pathway. Delineation of nAChR subtypes in non-small-cell lung cancers (NSCLC) may provide information for prevention or therapeutic targeting. Expression of nAChR subunit genes in 66 resected primary NSCLCs, 7 histologically non-involved lung tissues, 13 NSCLC cell lines, and 6 human bronchial epithelial cell lines (HBEC) was analyzed with quantitative PCR and microarray analysis. Five nonmalignant HBECs were exposed to nicotine in vitro to study the variation of nAChR subunit gene expression with nicotine exposure and removal. NSCLCs from nonsmokers showed higher expression of nAChR alpha6 (P < 0.001) and beta3 (P = 0.007) subunit genes than those from smokers, adjusted for gender. In addition, nAChR alpha4 (P < 0.001) and beta4 (P = 0.029) subunit gene expression showed significant difference between NSCLCs and normal lung. Using Affymetrix GeneChip U133 Sets, 65 differentially expressed genes associated with NSCLC nonsmoking nAChR alpha6beta3 phenotype were identified, which gave high sensitivity and specificity of prediction. nAChR alpha1, alpha5, and alpha7 showed significant reversible changes in expression levels in HBECs upon nicotine exposure. We conclude that between NSCLCs from smokers and nonsmokers, different nAChR subunit gene expression patterns were found, and a 65-gene expression signature was associated with nonsmoking nAChR alpha6beta3 expression. Finally, nicotine exposure in HBECs resulted in reversible differences in nAChR subunit gene expression. These results further implicate nicotine in bronchial carcinogenesis and suggest targeting nAChRs for prevention and therapy in lung cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-06-4628DOI Listing

Publication Analysis

Top Keywords

nachr subunit
16
subunit gene
16
gene expression
16
subunit genes
12
nicotine exposure
12
nachr
11
expression
10
nicotinic acetylcholine
8
non-small-cell lung
8
lung cancer
8

Similar Publications

Dopamine critically regulates neuronal excitability and promotes synaptic plasticity in the striatum, thereby shaping network connectivity and influencing behavior. These functions establish dopamine as a key neuromodulator, whose release properties have been well-studied in rodents but remain understudied in nonhuman primates. This study aims to close this gap by investigating the properties of dopamine release in macaque striatum and comparing/contrasting them to better-characterized mouse striatum, using ex vivo brain slices from male and female animals.

View Article and Find Full Text PDF

Genetic variation in the α5 nicotinic acetylcholine receptor (nAChR) subunit of mice results in behavioral deficits linked to the prefrontal cortex (PFC). rs16969968 is the primary Single Nucleotide Polymorphism (SNP) in CHRNA5 strongly associated with nicotine dependence and schizophrenia in humans. We performed single cell-electrophysiology combined with morphological reconstructions on layer 6 (L6) excitatory neurons in the medial PFC (mPFC) of wild type (WT) rats, rats carrying the human coding polymorphism rs16969968 in Chrna5 and α5 knockout (KO) rats.

View Article and Find Full Text PDF

In recent decades, the common and the tropical bed bugs have experienced a resurgence in many parts of the world. The evolution of insecticide resistance in bed bug populations is considered a significant factor contributing to this resurgence. We analyzed samples of Cimex lectularius L.

View Article and Find Full Text PDF

Background: Merkel cell carcinoma (MCC) is a rare, aggressive cutaneous malignancy with neuroendocrine differentiation. Several molecular pathways have been implicated in MCC development and multiple cell-of-origin candidates have been proposed, including neural crest cells, which express acetylcholine receptors (AChRs). The role of nicotinic acetylcholine receptors (nAChRs) in MCC has not been explored.

View Article and Find Full Text PDF

The stoichiometry of the α4β2 neuronal nicotinic acetylcholine receptors determines the pharmacological properties of the neonicotinoids, and recently introduced butenolide and sulfoximine.

Neurotoxicology

January 2025

Laboratoire Physiologie, Ecologie et Environnement (P2E), Université d'Orléans, UR 1207, USC-INRAE 1328, 1 rue de Chartres, Orléans 45067, France; Institut Universitaire de France (IUF), 1 rue Descartes, Paris 75005, France. Electronic address:

Although neonicotinoids were considered safe for mammals for many decades, recent research has proven that these insecticides can alter cholinergic functions by interacting with neuronal nicotinic acetylcholine (ACh) receptors (nAChRs). One such receptor is the heteromeric α4β2 nAChR, which exists under two different stoichiometries: high sensitivity and low sensitivity α4β2 nAChRs. To replace these insecticides, new classes of insecticides have been developed, such as, sulfoximine, sulfoxaflor, and the butenolide, flupyradifurone.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!