Feature extraction via KPCA for classification of gait patterns.

Hum Mov Sci

Key Laboratory of Biomedical Information Engineering of Education Ministry, Xi'an Jiaotong University, Xi'an 710049, China.

Published: June 2007

Automated recognition of gait pattern change is important in medical diagnostics as well as in the early identification of at-risk gait in the elderly. We evaluated the use of Kernel-based Principal Component Analysis (KPCA) to extract more gait features (i.e., to obtain more significant amounts of information about human movement) and thus to improve the classification of gait patterns. 3D gait data of 24 young and 24 elderly participants were acquired using an OPTOTRAK 3020 motion analysis system during normal walking, and a total of 36 gait spatio-temporal and kinematic variables were extracted from the recorded data. KPCA was used first for nonlinear feature extraction to then evaluate its effect on a subsequent classification in combination with learning algorithms such as support vector machines (SVMs). Cross-validation test results indicated that the proposed technique could allow spreading the information about the gait's kinematic structure into more nonlinear principal components, thus providing additional discriminatory information for the improvement of gait classification performance. The feature extraction ability of KPCA was affected slightly with different kernel functions as polynomial and radial basis function. The combination of KPCA and SVM could identify young-elderly gait patterns with 91% accuracy, resulting in a markedly improved performance compared to the combination of PCA and SVM. These results suggest that nonlinear feature extraction by KPCA improves the classification of young-elderly gait patterns, and holds considerable potential for future applications in direct dimensionality reduction and interpretation of multiple gait signals.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.humov.2007.01.015DOI Listing

Publication Analysis

Top Keywords

feature extraction
16
gait patterns
16
gait
11
extraction kpca
8
classification gait
8
nonlinear feature
8
young-elderly gait
8
kpca
6
classification
5
feature
4

Similar Publications

Multi-channel spatio-temporal graph attention contrastive network for brain disease diagnosis.

Neuroimage

January 2025

College of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China; Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China. Electronic address:

Dynamic brain networks (DBNs) can capture the intricate connections and temporal evolution among brain regions, becoming increasingly crucial in the diagnosis of neurological disorders. However, most existing researches tend to focus on isolated brain network sequence segmented by sliding windows, and they are difficult to effectively uncover the higher-order spatio-temporal topological pattern in DBNs. Meantime, it remains a challenge to utilize the structure connectivity prior in the DBNs analysis.

View Article and Find Full Text PDF

Circulating sexual stages of ) can be transmitted from humans to mosquitoes, thereby furthering the spread of malaria in the population. It is well established that antibodies can efficiently block parasite transmission. In search for naturally acquired antibodies targets on sexual stages, we established an efficient method for target-agnostic single B cell activation followed by high-throughput selection of human monoclonal antibodies (mAbs) reactive to sexual stages of in the form of gametes and gametocyte extracts.

View Article and Find Full Text PDF

This study explores the integration of telerehabilitation, virtual reality, and serious games technologies in addressing physical disabilities. Specifically, it focuses on game-based telerehabilitation for patients with stroke, Parkinson's disease, and multiple sclerosis undergoing home-based rehabilitation. Utilising the PICO approach, a search in Scopus and PubMed until February 21st, 2024, identified 31 relevant English articles out of 258 initially considered.

View Article and Find Full Text PDF

Purpose: Patients with advanced non-small cell lung cancer (NSCLC) have varying responses to immunotherapy, but there are no reliable, accepted biomarkers to accurately predict its therapeutic efficacy. The present study aimed to construct individualized models through automatic machine learning (autoML) to predict the efficacy of immunotherapy in patients with inoperable advanced NSCLC.

Methods: A total of 63 eligible participants were included and randomized into training and validation groups.

View Article and Find Full Text PDF

Aims: Kallmann syndrome (KS) is a rare genetic disorder characterized by congenital hypogonadotropic hypogonadism and varied clinical features. Despite its recognition, the oral and maxillofacial manifestations remain poorly understood. This study synthesized clinical aspects and management of KS-related oral and maxillofacial alterations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!