A novel organic cation transporter OCTN2 is indispensable for carnitine transport across plasma membrane and subsequent fatty acid metabolism in the mitochondria. Here, we report a novel splice variant of OCTN2 (OCTN2VT), in which a 72-base-pair sequence located in the first intron of OCTN2 gene was spliced between exons 1 and 2 of OCTN2, causing the insertion of 24 amino acids in the first extracellular loop of OCTN2. Despite the similarity between OCTN2 and OCTN2VT regarding primary structure and tissue distribution, their biochemical characteristics were significantly different. OCTN2 was expressed on the plasma membrane with robust N-glycosylation, whereas OCTN2VT was retained in the endoplasmic reticulum (ER) with poor N-glycosylation. In addition, the retention in the ER caused no carnitine uptake into the cells. These results demonstrate that the biochemical and functional characteristics of OCTN2VT are distinct from OCTN2 due to the insertion of 24 amino acids in the first extracellular loop.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbamcr.2007.04.005DOI Listing

Publication Analysis

Top Keywords

insertion amino
12
amino acids
12
acids extracellular
12
extracellular loop
12
octn2
10
splice variant
8
variant octn2
8
endoplasmic reticulum
8
loop octn2
8
plasma membrane
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!