Electrophoresis of spheres with uniform zeta potential in a gel modeled as an effective medium.

J Colloid Interface Sci

Department of Chemistry, Georgia State University, Atlanta, GA 30302-4098, USA.

Published: September 2007

The effective medium model [H.C. Brinkman, Appl. Sci. Res. A 1 (1947) 27] is used to calculate the electrophoretic mobility of spheres in a gel with uniform zeta potential on their surface. In the absence of a gel support medium or ion relaxation (the distortion of the ion atmosphere from equilibrium due to the presence of an external flow or electric field), our results reduce to those of Henry [D.C. Henry, Proc. R. Soc. London Ser. A 133 (1931) 106]. The relaxation effect can be ignored for weakly charged particles, or for particles with low absolute zeta potential. Using a procedure similar to that employed by O'Brien and White [R.W. O'Brien, L.R. White, J. Chem. Soc. Faraday Trans. 2 74 (1978) 1607], the relaxation effect is accounted for in the present work and results are presented over a wide range of particle sizes, gel concentrations, and zeta potentials in KCl salt solutions. In the limit of no gel, our results reduce to those of earlier investigations. The procedure is then applied to the mobility of Au nanoparticles in agarose gels and model results are compared to recent experiments [D. Zanchet, C.M. Micheel, W.J. Parak, D. Gerion, S.C. Williams, A.P. Alivisatos, J. Phys. Chem. B 106 (2002) 11758; T. Pons, H.T. Uyeda, I.L. Medintz, H. Mattoussi, J. Phys. Chem. B 110 (2006) 20308]. Good agreement with experiment is found for reasonable choices of the model input parameters.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2007.04.030DOI Listing

Publication Analysis

Top Keywords

zeta potential
12
uniform zeta
8
effective medium
8
o'brien white
8
phys chem
8
gel
5
electrophoresis spheres
4
spheres uniform
4
zeta
4
potential gel
4

Similar Publications

The transdermal route is one of the effective routes for delivering drugs. It also overcomes many limitations associated with oral delivery. One of the limitations of this route is the drug's poor skin permeability-stratum corneum, the skin's outermost layer that also acts as a barrier for the drug to penetrate.

View Article and Find Full Text PDF

Using potentiometric testing, we investigated the zeta potential of shield muck curing materials' particle surfaces, varying the concentration of metal ion complex. We analyzed the microscopic characteristics of shield muck curing products by using the electron microscopy, revealing the impact of metal ion complex on curing. Results showed that the metal ion complex significantly reduces the surface zeta potential of shield muck and conventional curing materials, with cement showing the most substantial effect, followed by shield muck, calcium carbonate, and calcium sulfate.

View Article and Find Full Text PDF

This study investigates a nanoparticle-based doxycycline (DOX) delivery system targeting cervical cancer cells via the CD44 receptor. Molecular docking revealed a strong binding affinity between hyaluronic acid (HA) and CD44 (binding energy: -7.2 kJ/mol).

View Article and Find Full Text PDF

The potential health hazards of micro/nanoplastics in food have become a significant concern. This study developed a Polydopamine-modified sodium alginate hydrogel (PMSAH) for removing microplastics in daily drinking water. The hydrogel's performance, characteristics, and kinetics for microplastic removal were systematically evaluated.

View Article and Find Full Text PDF

Though warangalone has shown anticancer properties against breast cancer cells, its colloidal stability and therapeutic index ought to be improved using a potential strategy, especially via protein-based (nano)carriers. In this research, transferrin was used as a plasma protein for the development of the warangalone-transferrin NPs. To investigate the mechanism underlying the formation of this complex, the interaction between warangalone and transferrin, as well as transferrin NPs, was analyzed using spectroscopic methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!