Objectives: The purpose of this study was to characterize intervertebral stiffness and alignment changes in the external link model and evaluate it as an experimental mimic for studying the chiropractic subluxation.

Method: A controlled test-retest design was used to evaluate rats with spine segments linked in 3 alignment configurations and controls that were never linked. Dorsal-to-ventral spine stiffness was measured with a load platform, and flexion/extension misalignment was assessed on lateral radiographs obtained with a spine extension jig. Descriptive statistics were computed for study groups, and multiple linear regression models were used to examine all potential explanatory variables for the response variables "stiffness" and "joint position."

Results: Rats tested with links in place had significantly higher dorsal-to-ventral stiffness in the neutral configuration than rats in the flexed configuration. This difference remained after the links were removed. Stiffness after link removal was greater for longer linked periods. Surprisingly, stiffness after link removal was also greater with longer unlinked periods. Longer linked periods also produced greater misalignments during forced spine extension testing. Although link configuration was not a statistically significant predictor of misalignments, longer times after link removal did produce greater misalignments.

Conclusions: This study suggests that the external link model can be a valuable tool for studying the effects of spine fixation and misalignment, 2 cardinal features of what has been historically described as the chiropractic subluxation. Significant residual stiffness and misalignment remained after the links were removed. The progressive course of this lesion is consistent with subluxation theory and clinical chiropractic experience.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmpt.2007.03.002DOI Listing

Publication Analysis

Top Keywords

external link
12
link model
12
link removal
12
spine fixation
8
fixation misalignment
8
spine extension
8
remained links
8
links removed
8
stiffness link
8
removal greater
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!