Intraspecific variability in the Basal metabolic rate: testing the food habits hypothesis.

Physiol Biochem Zool

Center for Advanced Studies in Ecology and Biodiversity and Departamento de Ecologia, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Santiago 6513677, Chile.

Published: September 2007

Several competing hypotheses attempt to explain how environmental conditions affect mass-independent basal metabolic rate (BMR) in mammals. One of the most inclusive and yet debatable hypotheses is the one that associates BMR with food habits, including habitat productivity. These effects have been widely investigated at the interspecific level under the assumption that for any given species all traits are fixed. Consequently, the variation among individuals is largely ignored. Intraspecific analysis of physiological traits has the potential to compensate for many of the pitfalls associated with interspecific analyses and, thus, to be a useful approach for evaluating hypotheses regarding metabolic adaptation. In this study, we investigated the effects of food quality, availability, and predictability on the BMR of the leaf-eared mouse Phyllotis darwini. BMR was measured on freshly caught animals from the field, since they experience natural seasonal variations in environmental factors (and, hence, variations in habitat productivity) and diet quality. BMR was significantly correlated with the proportion of dietary plants and seeds. In addition, BMR was significantly correlated with monthly habitat productivity. Path analysis indicated that, in our study, habitat productivity was responsible for the observed changes in BMR, while diet per se had no effect on this variable.

Download full-text PDF

Source
http://dx.doi.org/10.1086/518376DOI Listing

Publication Analysis

Top Keywords

habitat productivity
16
basal metabolic
8
metabolic rate
8
food habits
8
bmr correlated
8
bmr
7
intraspecific variability
4
variability basal
4
rate testing
4
testing food
4

Similar Publications

Common reed () is a cosmopolitan species, though its dieback is a worldwide phenomenon. In order to assess the evolutionary role of phenotypic plasticity in a successful plant, the values and plasticity of photophysiological traits of were investigated in the Lake Fertő wetlands at 5 sites with different degrees of reed degradation and along a seasonal sequence. On the one hand, along the established ecological degradation gradient, photophysiological traits of changed significantly, affecting plant productivity, although no consistent gradient-type trends were observed.

View Article and Find Full Text PDF

Long-term effects of combining anaerobic digestate with other organic waste products on soil microbial communities.

Front Microbiol

January 2025

Agroécologie, French National Institute for Agriculture, Food, and Environment (INRAE), Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France.

Introduction: Agriculture is undergoing an agroecological transition characterized by adopting new practices to reduce chemical fertilizer inputs. In this context, digestates are emerging as sustainable substitutes for mineral fertilizers. However, large-scale application of digestates in agricultural fields requires rigorous studies to evaluate their long-term effects on soil microbial communities, which are crucial for ecosystem functioning and resilience.

View Article and Find Full Text PDF

Although oil extraction is indispensable for meeting worldwide energy demands and ensuring industrial sustainability, various hazards are observed. Therefore, this study examined the chemical oil recovery-related environmental consequences concerning water, soil, ecosystem, and human health damages. A numerical analysis explored the mathematical model for oil extraction from unconventional sources by utilising 3D porous prism geometries under high-temperature conditions.

View Article and Find Full Text PDF

All species must partition resources among the processes that underly growth, survival, and reproduction. The resulting demographic trade-offs constrain the range of viable life-history strategies and are hypothesized to promote local coexistence. Tropical forests pose ideal systems to study demographic trade-offs as they have a high diversity of coexisting tree species whose life-history strategies tend to align along two orthogonal axes of variation: a growth-survival trade-off that separates species with fast growth from species with high survival and a stature-recruitment trade-off that separates species that achieve large stature from species with high recruitment.

View Article and Find Full Text PDF

Advances in Research on Marine Natural Products for Modulating the Inflammatory Microenvironment.

Phytother Res

January 2025

International Research Centre for Food and Health, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.

In recent years, marine natural products (MNPs) have emerged as crucial sources of lead compounds for the advancement of anti-inflammatory drugs due to their abundant diversity, complexity, and distinctiveness. Inflammatory microenvironments (IMEs) are pervasive pathological features in the etiology of various chronic diseases, referring to the localized milieu or ecosystem where inflammatory responses occur, and they play a pivotal role in the onset and progression of inflammatory diseases. Uncontrolled IMEs can lead to dysregulation of inflammatory mediators within signaling pathways, thereby exerting detrimental effects on human health and even contributing to the development of inflammatory diseases such as cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!