Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Recovery of renal function is a well-characterized feature of models of acute renal failure; however, more recent studies have reported a predisposition to chronic renal disease. This study sought to determine the susceptibility to sodium-dependent hypertension following recovery from ischemic acute renal failure. Following ischemia-reperfusion (I/R) injury, rats were allowed to recover for 35 days on a 0.4% salt diet, then were switched to 4.0% salt diet for an additional 28 days. Blood pressure was significantly increased in postischemic rats switched to high-sodium diet at day 35 (19 +/- 9 mmHg) compared with postischemic rats maintained on low-sodium diet. Plasma renin activity and creatinine clearance were not affected by I/R injury. The ischemic injury combined with transfer to 4.0% salt diet resulted in marked renal hypertrophy characterized by interstitial cellular deposition, tubular dilation, and enhanced rates of albumin excretion. Glomerular structure was altered in post-I/R rats switched to high-sodium diet but not in those maintained on low-sodium diets. When rats were acclimated to high-sodium diet before I/R injury, the early injury was similar to that observed in animals acclimated to low-sodium diet, and these animals progressed rapidly toward chronic kidney disease, as evidenced by advancement of albuminuria. These data suggest that the recovery from acute I/R injury is not complete, compromises Na homeostasis, and predisposes hypertension and secondary renal disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajprenal.00279.2006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!