We have combined electrophysiology and chemical separation and measurement techniques with capillary electrophoresis (CE) to evaluate the role of endogenous d-serine as an NMDA receptor (NMDAR) coagonist in the salamander retina. Electrophysiological experiments were carried out using whole cell recordings from retinal ganglion cells and extracellular recordings of the proximal negative response (PNR), while bath applying two D-serine degrading enzymes, including d-amino acid oxidase (DAAO) and D-serine deaminase (DsdA). The addition of either enzyme resulted in a significant and rapid decline in the light-evoked responses observed in ganglion cell and PNR recordings. The addition of exogenous D-serine in the presence of the enzymes restored the light-evoked responses to the control or supracontrol amplitudes. Heat-inactivated enzymes had no effect on the light responses and blocking NMDARs with AP7 eliminated the suppressive influence of the enzymes as well as the response enhancement normally associated with exogenous d-serine application. CE was used to separate amino acid racemates and to study the selectivity of DAAO and DsdA against D-serine and glycine. Both enzymes showed high selectivity for D-serine without significant effects on glycine. Our results strongly support the concept that endogenous D-serine plays an essential role as a coagonist for NMDARs, allowing them to contribute to the light-evoked responses of retinal ganglion cells. Furthermore under our experimental conditions, these coagonist sites are not saturated so that modulation of NMDAR sensitivity can be achieved with further modulaton of d-serine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/jn.00057.2006 | DOI Listing |
Cell Rep Med
December 2024
Department of Neuroscience, University of Montreal, PO box 6128, Station Centre-ville, Montreal, Quebec H3C 3J7, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, Quebec H2X 0A9, Canada. Electronic address:
bioRxiv
October 2024
Department of Psychiatry & Biobehavioral Sciences, University of California Los Angeles.
Vision Res
November 2024
Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, United States.
Glaucoma is a leading cause of blindness worldwide and glaucoma patients exhibit an early diffuse loss of retinal sensitivity followed by focal loss of RGCs. Combining some previous published results and some new data, this paper provides our current view on how high IOP (H-IOP) affects the light response sensitivity of a subset of RGCs, the alpha-ganglion cells (αGCs), as well as their presynaptic bipolar cells (DBCs and HBCs) and A2 amacrine cells (AIIACs) in dark-adapted mouse retinas. Our data demonstrate that H-IOP in experimental glaucoma mice significantly decreases light-evoked spike response sensitivity of sONαGCs and sOFFαGCs (i.
View Article and Find Full Text PDFExp Eye Res
October 2024
Department of Physiology, University of Arizona, Tucson, AZ, USA; Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA. Electronic address:
The retina has low dopamine levels early in diabetes. To determine how low dopamine levels affected dopamine signaling, the effects of dopamine receptor agonists and mRNA localization were measured after 6 weeks of diabetes. Whole retina ex vivo electroretinogram (ERG) recordings were used to analyze how dopamine type 1 receptor (D1R) and type 4 (D4R) agonists change the light-evoked retinal responses of non-diabetic and 6-week diabetic (STZ injected) mouse retinas.
View Article and Find Full Text PDFbioRxiv
July 2024
Wilkes Honors College, Florida Atlantic University, Jupiter, FL.
Adaptive behaviors emerge in novel environments through functional changes in neural circuits. While relationships between circuit function and behavior have been well studied, how evolution shapes those circuits and leads to behavioral adpation is poorly understood. The Mexican cavefish, , provides a unique genetically amendable model system, equipped with above ground eyed surface fish and multiple evolutionarily divergent populations of blind cavefish that have evolved in complete darkness.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!