The right kidney of anesthetized rats was imaged with intermittent diagnostic ultrasound (1.5 MHz; 1-s trigger interval) under exposure conditions simulating those encountered in human perfusion imaging. The rats were infused intravenously with 10 microL/kg/min Definity (Bristol-Myers Squibb Medical Imaging, Inc., N. Billerica, MA, USA) while being exposed to mechanical index (MI) values of up to 1.5 for 1 min. Suprathreshold MI values ruptured glomerular capillaries, resulting in blood filling Bowman's space and proximal convoluted tubules of many nephrons. The re-establishment of a pressure gradient after hemostasis caused the uninjured portions of the glomerular capillaries to resume the production of urinary filtrate, which washed some or all of the erythrocytes out of Bowman's space and cleared blood cells from some nephrons into urine within six hours. However, many of the injured nephrons remained plugged with tightly packed red cell casts 24 h after imaging and also showed degeneration of tubular epithelium, indicative of acute tubular necrosis. The additional damage caused by the extravasated blood amplified that caused by the original cavitating gas body. Human nephrons are virtually identical to those of the rat and so it is probable that similar glomerular capillary rupture followed by transient blockage and/or epithelial degeneration will occur after clinical exposures using similar high MI intermittent imaging with gas body contrast agents. The detection of blood in postimaging urine samples using standard hematuria tests would confirm whether or not clinical protocols need to be developed to avoid this potential for iatrogenic injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1986772PMC
http://dx.doi.org/10.1016/j.ultrasmedbio.2007.03.002DOI Listing

Publication Analysis

Top Keywords

gas body
12
diagnostic ultrasound
8
body contrast
8
glomerular capillaries
8
bowman's space
8
imaging
5
nephron injury
4
injury induced
4
induced diagnostic
4
ultrasound imaging
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!