Angiotensin-converting enzyme inhibitors in veterinary medicine.

Curr Pharm Des

UMR 181 INRA-ENVT Physiopathologie et Toxicologie Expérimentales, National Veterinary School, Toulouse cedex 03, France.

Published: July 2007

Angiotensin-converting enzyme (ACE) inhibitors represent one of the most commonly used categories of drugs in canine and feline medicine. ACE inhibitors currently approved for use in veterinary medicine are benazepril, enalapril, imidapril and ramipril. They are all pro-drugs administered by oral route. A physiologically based model taking into account the saturable binding to ACE has been developed for pharmacokinetic analysis. The bioavailability of the active compounds from their respective pro-drug is low. The active metabolites are eliminated by renal, hepatorenal or biliary excretion, according to the drug. The elimination half-life of the free fraction of the active compounds is very short (ranging from approximately 10 min to 2 h). ACE inhibitors are generally well tolerated. Benazepril, enalapril, imidapril and ramipril are approved for dogs with chronic heart failure (CHF). The efficacy of ACE inhibitors has been convincingly demonstrated in dogs with CHF, especially in those with chronic valvular disease. In such clinical settings, ACE inhibitors improve hemodynamics and clinical signs, and increase survival time. In cats with cardiovascular disease, little information is available except for reports of some benefit in cats with hypertrophic cardiomyopathy in two non-controlled investigations. ACE inhibitors have also a mild to moderate hypotensive effect. There is also evidence to recommend ACE inhibitors in dogs and cats with chronic renal failure (CRF). They decrease the glomerular capillary pressure, have antiproteinuric effects, tend to delay the progression of CRF and to limit the extent of renal lesions.

Download full-text PDF

Source
http://dx.doi.org/10.2174/138161207780618830DOI Listing

Publication Analysis

Top Keywords

ace inhibitors
28
angiotensin-converting enzyme
8
inhibitors
8
veterinary medicine
8
ace
8
benazepril enalapril
8
enalapril imidapril
8
imidapril ramipril
8
active compounds
8
enzyme inhibitors
4

Similar Publications

Co-products from the frozen fish processing industry often lead to financial losses. Therefore, it is essential to transform these co-products into profitable goods. This study explores the production of fish protein hydrolysates (FPH) from three co-products: the heads and bones of black scabbardfish (), the carcasses of gilthead seabream (), and the trimmings of Nile perch ().

View Article and Find Full Text PDF

Changes in Phenylacetylglutamine Levels Provide Add-On Value in Risk Stratification of Hypertensive Patients: A Longitudinal Cohort Study.

Metabolites

January 2025

Beijing Anzhen Hospital, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China.

Background: Despite antihypertensive treatment, some high-risk hypertensive patients still experience major adverse cardiovascular events (MACEs). Current risk stratification tools may underestimate the presence of metabolites in hypertension and thereby risk of MACEs.

Objectives: We aimed to explore the potential value of gut microbiota-derived metabolite phenylacetylglutamine (PAGln) in risk stratification of hypertension.

View Article and Find Full Text PDF

Exploring Drug-Drug Interactions between Losartan and Carbamazepine: A Pharmacokinetic and Pharmacodynamic Study.

Curr Drug Metab

January 2025

Department of Pharmacology, College of Pharmaceutical Sciences, Dayananda Sagar University, Deverakeggahalli, Kanakapura Road, Ramanagara Distt, Karnataka, 562112, India.

Background: Hypertension, which affects 1.28 billion people globally aged 30 to 79, is characterized by continuously high blood pressure (140/90 or more) and raises the risk of premature death. Losartan, an angiotensin receptor blocker (ARB), is suggested for patients under the age of 55 who cannot take ACE inhibitors as a first treatment option.

View Article and Find Full Text PDF

Unearthing novel and multifunctional peptides in peptidome of fermented chhurpi cheese of Indian Himalayan region.

Food Res Int

February 2025

National Agri-Food and Biomanufacturing Institute, SAS Nagar, Mohali, India; Institute of Bioresources and Sustainable Development, Regional Centre, Sikkim, India. Electronic address:

Fermented foods of the Indian Himalaya are unexplored functional resources with high nutritional potential. Chhurpi cheese, fermented by defined native proteolytic lactic acid bacteria of Sikkim was assessed for ACE inhibitory, HOCl reducing, and MPO inhibitory, activity across varying stages of gastrointestinal (GI) digestion. The enhanced bioactivity of Lactobacillus delbrueckii WS4 chhurpi was associated with the generation of bioactive and multifunctional peptides during fermentation and GI digestion.

View Article and Find Full Text PDF

Changes in functional activities and volatile flavor compounds of fermented mung beans, cowpeas, and quinoa started with Bacillus amyloliquefaciens SY07.

Food Res Int

February 2025

State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457 PR China. Electronic address:

In this work, the functional activities including α-glucosidase, α-amylase, angiotensin converting enzyme (ACE) inhibitory activity, and antioxidant activity of mixed grains (mung beans, cowpeas, and quinoa) fermented with Bacillus amyloliquefaciens SY07 were investigated. The volatile flavor of the mixed grains collected every 12 h during 72 h-fermentation were further detected as well. The inhibition on α-glucosidase and α-amylase reached up to 89.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!