Structure and mechanism of helicases and nucleic acid translocases.

Annu Rev Biochem

Macromolecular Structure and Function Laboratory, The London Research Institute, London WC2A 3PX, United Kingdom.

Published: September 2007

Helicases and translocases are a ubiquitous, highly diverse group of proteins that perform an extraordinary variety of functions in cells. Consequently, this review sets out to define a nomenclature for these enzymes based on current knowledge of sequence, structure, and mechanism. Using previous definitions of helicase families as a basis, we delineate six superfamilies of enzymes, with examples of crystal structures where available, and discuss these structures in the context of biochemical data to outline our present understanding of helicase and translocase activity. As a result, each superfamily is subdivided, where appropriate, on the basis of mechanistic understanding, which we hope will provide a framework for classification of new superfamily members as they are discovered and characterized.

Download full-text PDF

Source
http://dx.doi.org/10.1146/annurev.biochem.76.052305.115300DOI Listing

Publication Analysis

Top Keywords

structure mechanism
8
mechanism helicases
4
helicases nucleic
4
nucleic acid
4
acid translocases
4
translocases helicases
4
helicases translocases
4
translocases ubiquitous
4
ubiquitous highly
4
highly diverse
4

Similar Publications

Defects are common features in hematite that arise from deviations from the perfect mineral crystal structure. Vacancy defects have been shown to significantly enhance arsenate (As) immobilization by hematite. However, the contributions from vacancy defects on different exposed facets of hematite have not been fully quantified.

View Article and Find Full Text PDF

Alzheimer's Disease (AD), a progressive neurodegenerative disorder, is characterized by the accumulation of neurofibrillary tangles and β-amyloid plaques, leading to a decline in cognitive function. AD is characterized by tau protein hyperphosphorylation and extracellular β-amyloid accumulation. Even after much research, there are still no proven cures for AD.

View Article and Find Full Text PDF

With the rapid advancement of plant phenotyping research, understanding plant genetic information and growth trends has become crucial. Measuring seedling length is a key criterion for assessing seed viability, but traditional ruler-based methods are time-consuming and labor-intensive. To address these limitations, we propose an efficient deep learning approach to enhance plant seedling phenotyping analysis.

View Article and Find Full Text PDF

Oral squamous cell carcinoma (OSCC) accounts for approximately 90% of all oral cancers, significantly impacting the survival and quality of life of patients. Exosomes, small extracellular vesicles released by cells, play a crucial role in intercellular communication in cancer. Nevertheless, their function and mechanism in OSCC remain elusive.

View Article and Find Full Text PDF

Fibroblasts, non-hematopoietic cells of mesenchymal origin, are tissue architects which regulate the topography of tissues, dictate tissue resident cell types, and drive fibrotic disease. Fibroblasts regulate the composition of the extracellular matrix (ECM), a 3-dimensional network of macromolecules that comprise the acellular milieu of tissues. Fibroblasts can directly and indirectly regulate immune responses by secreting ECM and ECM-bound molecules to shape tissue structure and influence organ function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!