Pseudomonas syringae pv. syringae, which causes the bacterial apical necrosis of mango, produces the antimetabolite mangotoxin. We report here the cloning, sequencing, and identity analysis of a chromosomal region of 11.1 kb from strain P syringae pv. syringae UMAF0158, which is involved in mangotoxin biosynthesis. This chromosomal region contains six complete open reading frames (ORFs), including a large gene (ORF5) with a modular architecture characteristic of nonribosomal peptide synthetases (NRPS) named mgoA. A Tn5 mutant disrupted in mgoA was defective in mangotoxin production, revealing the involvement of the putative NRPS gene in the biosynthesis of mangotoxin. This derivative strain impaired in mangotoxin production also showed a reduction in virulence as measured by necrotic symptoms on tomato leaflets. Mangotoxin production and virulence were restored fully in the NRPS mutant by complementation with plasmid pCG2-6, which contains an 11,103-bp chromosomal region cloned from the wild-type strain P syringae pv. syringae UMAF0158 that includes the putative NPRS gene (mgoA). The results demonstrate that mgoA has a role in the virulence of P. syringae pv. syringae. The involvement of an NRPS in the production of an antimetabolite toxin from P. syringae inhibiting ornithine acetyltransferase activity is proposed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/MPMI-20-5-0500 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!