A dual-beam fiber laser trap, termed the optical stretcher when used to deform objects, has been combined with a capillary-based microfluidic system in order to serially trap and deform biological cells. The design allows for control over the size and position of the trap relative to the flow channel. Data is recorded using video phase contrast microscopy and is subsequently analyzed using a custom edge fitting routine. This setup has been regularly used with measuring rates of 50-100 cells/h. One such experiment is presented to compare the distribution of deformability found within a normal epithelial cell line to that of a cancerous one. In general, this microfluidic optical stretcher can be used for the characterization of cells by their viscoelastic signature. Possible applications include the cytological diagnosis of cancer and the gentle and marker-free sorting of stem cells from heterogeneous populations for therapeutic cell-based approaches in regenerative medicine.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10544-007-9079-xDOI Listing

Publication Analysis

Top Keywords

laser trap
8
optical stretcher
8
reconfigurable microfluidic
4
microfluidic integration
4
integration dual-beam
4
dual-beam laser
4
trap
4
trap biomedical
4
biomedical applications
4
applications dual-beam
4

Similar Publications

Neutrophil extracellular traps (NETs) formation is a key process in inflammatory diseases like gout, but the underlying molecular mechanisms remain incompletely understood. This study aimed to establish a model to examine the formation of NETs induced by monosodium urate (MSU) and phorbol 12-myristate 13-acetate (PMA) and to elucidate their molecular pathways. Laser confocal microscopy was used to visualize NET formation, while flow cytometry was employed to detect reactive oxygen species (ROS) production.

View Article and Find Full Text PDF

LuAlO:Ce Fluorescent Ceramic with Deep Traps: Thermoluminescence and Photostimulable Luminescence Properties.

Materials (Basel)

December 2024

Engineering Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China.

Electron-trapping materials have attracted a lot of attention in the field of optical data storage. However, the lack of suitable trap levels has hindered its development and application in the field of optical data storage. Herein, LuAlO:Ce fluorescent ceramics were developed as the optical storage medium, and high-temperature vacuum sintering induced the formation of deep traps (1.

View Article and Find Full Text PDF

On-Demand Controlled Release Multi-Drugs Delivery System for Spatiotemporally Synergizing Antitumor Immunotherapy.

Adv Sci (Weinh)

January 2025

School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, China.

Although cytotoxic T lymphocytes (CTLs) activation combined with programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1) axis blockade have emerged as an effective strategy to improve immunotherapeutic potency, it remains challenging to realize the spatiotemporal synergy of these two components. Herein, the study reports an engineered bacterial-based delivery system that can simultaneously promote CTLs infiltration and control PD-L1 binding protein (PD-L1 trap) release on demand at tumor site. The drug release button of this tumor targeting system is the specific temperature, which is accomplished by dual-modified melanin nanoparticles with photothermal conversion capacity on the engineered bacterial.

View Article and Find Full Text PDF

Solar-driven interfacial evaporation is one of the most attractive approaches to addressing the global freshwater shortage. However, achieving an integrated high evaporation rate, salt harvesting, and multifunctionality in evaporator is still a crucial challenge. Here, a novel composite membrane with biomimetic micro-nanostructured superhydrophobic surface is designed via ultrafast laser etching technology.

View Article and Find Full Text PDF

A Novel Bispecific Anti-IL17/VEGF Fusion Trap Exhibits Potent and Long-Lasting Inhibitory Effects on the Development of Age-Related Macular Degeneration.

Biochem Res Int

December 2024

Development of Research and Development, Sunshine Guojian Pharmaceutical (Shanghai) Co. Ltd., a 3SBio Inc. Company, 399 Libing Road, Shanghai 201203, China.

Age-related macular degeneration (AMD) is a severe eye disease in people aged 60 years and older. Although anti-VEGF therapies are effective in treating neovascular AMD (NvAMD) in the clinic, up to 60% of patients do not completely respond to the therapies. Recent studies have shown that blood-derived macrophages and their associated proinflammatory cytokines may play important roles in the development of persistent disease and resistance to anti-VEGF therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!