An earlier study showed that the presence of gut flora elevates body temperature of mice and rats. In these experiments, we questioned whether the signal coming from the gut was endotoxin from gram-negative (Gm-) bacteria or some signal derived from gram-positive (Gm+) microorganisms. To test the idea that endotoxin is responsible for the effects of flora, we compared the temperature of the endotoxin-resistant mouse (C3H/HeJ) with that of endotoxin-sensitive strains of mice (C3H/SnJ and C3H/HeN). Temperature of C3H/HeJ was not different from that of C3H/SnJ or C3H/HeN during the light period but was significantly lower during the later hours of the dark period. We speculated that, if endotoxin leaking across the gut wall were responsible for elevating temperature, then reduction of gut flora with nonabsorbable antibiotics would depress the temperature of the endotoxin-sensitive mice more than that of the endotoxin-resistant mice. Because antibiotics lowered the temperature of both strains of mice to the same extent, the signal coming from the gut is unlikely to be endotoxin. To test whether Gm+ flora can be responsible for elevating temperature, we inoculated one group of germfree mice with Gm+ organisms. Their mean temperature was significantly higher than that of mice that remained germfree. Cecectomy had no effect on temperature, indicating that the special properties of the germfree cecum were not involved in lowering the temperature of germfree mice. These data support the hypotheses that Gm+ organisms are a major source of the stimulatory effect of flora on normal body temperature and that the presence of Gm- organisms is unnecessary.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpregu.1991.261.6.R1358 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!