Recent clinical studies of patients with sepsis have shown that the delivery of adequate oxygen alone does not necessarily result in improved organ function or survival. This study was undertaken to determine if optical spectroscopy could detect higher intracellular oxygenations in isolated, perfused guinea pig hearts that have been treated with endotoxin (lipopolysaccharide [LPS]) than in controls. Four hours after intraperitoneal injection with LPS, adult guinea pigs were anesthetized, and hearts were excised and perfused in the Langendorff manner. Six control and eight LPS-exposed guinea pigs were studied. Myoglobin oxygen saturation was determined from analysis of optical reflectance spectra acquired from the left ventricular free wall. Myoglobin saturation was significantly higher at baseline with LPS than in controls (96.0% +/- 0.8% vs. 89.4% +/- 1.7%, P < 0.001). At the end of 30 s of ischemia, myoglobin saturation decreased to 15% +/- 1% in controls, but to only 60% +/- 7% in the LPS group. Myocardial performance was determined by measured left ventricular developed pressure, which was significantly depressed in the LPS-exposed hearts relative to controls (30 +/- 4 mmHg vs. 67 +/- 9 mmHg, P < 0.001). Myocardial oxygen consumption, calculated from measurements of arterial and venous PO2 and coronary flow, was lower in LPS hearts relative to controls (0.199 +/- 0.021 mL oxygen x min(-1) x g(-1) vs. 0.157 +/- 0.006 mL oxygen x min(-1) x g(-1)). In this model of sepsis in the perfused guinea pig heart, intracellular oxygenation was higher and oxygen consumption was lower than in controls. Cellular dysfunction seen in sepsis may be caused by compromised oxygen use rather than insufficient oxygen delivery. Optical spectroscopy has the potential to noninvasively monitor patients and their responses to therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1097/SHK.0b013e31802e44e7DOI Listing

Publication Analysis

Top Keywords

optical spectroscopy
12
intracellular oxygenation
8
model sepsis
8
sepsis perfused
8
oxygen
8
perfused guinea
8
guinea pig
8
guinea pigs
8
left ventricular
8
myoglobin saturation
8

Similar Publications

Carbon dots (CDs) are versatile nanomaterials that are considered ideal for application in bioimaging, drug delivery, sensing, and optoelectronics owing to their excellent photoluminescence, biocompatibility, and chemical stability features. Nitrogen doping enhances the fluorescence of CDs, alters their electronic properties, and improves their functional versatility. N-doped CDs can be synthesized via solvothermal treatment of carbon sources with nitrogen-rich precursors; however, systematic investigations of their synthesis mechanisms have been rarely reported.

View Article and Find Full Text PDF

Helicobacter pylori (H. pylori) is one of the most globally prevalent bacteria, closely associated with gastrointestinal diseases such as gastric ulcers and chronic gastritis. Current clinical methods primarily involve Carbon-13 and Carbon-14 urea breath test, both carrying potential safety risks.

View Article and Find Full Text PDF

Objectives: This study aimed to verify if composites containing dicalcium phosphate dihydrate particles (DCPD) are able to induce dentin remineralization in vitro. Additionally, the mechanical properties of the materials were tested.

Methods: Four composites with 50 vol% inorganic content and 1 BisGMA: 1 TEGDMA (mols) were prepared, with different DCPD:glass ratios (50:0, 40:10, 30:20 and 0:50).

View Article and Find Full Text PDF

The Historical and Clinical Foundations of the Modern Neuroscience Intensive Care Unit.

World Neurosurg

December 2024

Clinical and Translational Neuroscience Unit, Department of Neurology and Feil Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA. Electronic address:

The subspecialty of neurocritical care has grown significantly over the past 40 years along with advancements in the medical and surgical management of neurological emergencies. The modern neuroscience intensive care unit (neuro-ICU) is grounded in close collaboration between neurointensivists and neurosurgeons in the management of patients with such conditions as ischemic stroke, aneurysmal subarachnoid hemorrhage, intracerebral hemorrhage, subdural hematomas, and traumatic brain injury. Neuro-ICUs are also capable of specialized monitoring such as serial neurological examinations by trained neuro-ICU nurses; invasive monitoring of intracranial pressure, cerebral oxygenation, and cerebral hemodynamics; cerebral microdialysis; and noninvasive monitoring, including the use of pupillometry, ultrasound monitoring of optic nerve sheath diameters, transcranial Doppler ultrasonography, near-infrared spectroscopy, and continuous electroencephalography.

View Article and Find Full Text PDF

Characterization and risk assessment of microplastics in shoreline sediments of the Yellow River Delta.

Mar Environ Res

December 2024

Institute of Ocean Research, Peking University, Beijing 100871, China; College of Urban and Environmental Sciences, Peking University, Beijing 100871, China. Electronic address:

As the intersection of river, sea, and land, river deltas are hotspots for the accumulation of microplastics (MPs). This study investigated the abundance and characteristics of MPs in surface sediments from shoreline area of the Yellow River Delta in northern China, elucidated their sources, and assessed their risk. The MPs isolated from sediment samples were detected and characterized using optical microscopy and micro-Fourier transform infrared spectroscopy (μ-FTIR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!