Glucose-dependent insulinotropic polypeptide (GIP) is a gastrointestinal hormone that has a potent stimulatory effect on insulin release under conditions of normal glucose tolerance. However, its insulinotropic effect is reduced or even absent entirely in type 2 diabetic patients. In this study, we addressed the role of glucose concentration in the diabetic range of >or=11 mM, i.e., hyperglycemia per se, as a cause of the lack of response to GIP. Culturing rat and human pancreatic islets in >or=11 mM glucose for up to 24 h resulted in prevention of GIP-mediated intracellular cAMP increase compared with culturing in 5 mM glucose. Western blot analysis revealed a selective 67 +/- 2% (rat) and 60 +/- 8% (human) decrease of GIP-R expression in islets exposed to >or=11 mM glucose compared with 5 mM glucose (P < 0.001). We further immunoprecipitated GIP-R from islets and found that GIP-R was targeted for ubiquitination in a glucose- and time-dependent manner. Downregulation of GIP-R was rescued by treating isolated islets with proteasomal inhibitors lactacystin and MG-132, and the islets were once again capable of increasing intracellular cAMP levels in response to GIP. These results suggest that the GIP-R is ubiquitated, resulting in downregulation of the actions of GIP.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2640485PMC
http://dx.doi.org/10.1152/ajpendo.00070.2007DOI Listing

Publication Analysis

Top Keywords

response gip
8
>or=11 glucose
8
intracellular camp
8
islets
6
glucose
6
gip
5
gip-r
5
ubiquitination involved
4
involved glucose-mediated
4
glucose-mediated downregulation
4

Similar Publications

A physiologically-based quantitative systems pharmacology model for mechanistic understanding of the response to alogliptin and its application in patients with renal impairment.

J Pharmacokinet Pharmacodyn

January 2025

Department of Clinical Pharmacy and Pharmacy Administration, West China school of Pharmacy, Sichuan University, Chengdu, 610064, China.

Alogliptin is a highly selective inhibitor of dipeptidyl peptidase-4 and primarily excreted as unchanged drug in the urine, and differences in clinical outcomes in renal impairment patients increase the risk of serious adverse reactions. In this study, we developed a comprehensive physiologically-based quantitative systematic pharmacology model of the alogliptin-glucose control system to predict plasma exposure and use glucose as a clinical endpoint to prospectively understand its therapeutic outcomes with varying renal function. Our model incorporates a PBPK model for alogliptin, DPP-4 activity described by receptor occupancy theory, and the crosstalk and feedback loops for GLP-1-GIP-glucagon, insulin, and glucose.

View Article and Find Full Text PDF

Background: Obesity is a chronic disease associated with increased risk of multiple metabolic and mental health-related comorbidities. Recent advances in obesity pharmacotherapy, particularly with glucagon-like peptide-1 (GLP-1) receptor agonists (RAs), have the potential to transform obesity and type 2 diabetes mellitus (T2DM) care by promoting marked weight loss, improving glycaemic control and addressing multiple obesity-related comorbidities, with added cardio-renal benefits. Dual agonists combining GLP-1 with other enteropancreatic hormones such as glucose-dependent insulinotropic polypeptide (GIP) have also been developed in recent years, leading to greater weight loss than using GLP-1 RAs alone.

View Article and Find Full Text PDF

The thrombolytic protease tissue plasminogen activator (tPA) is expressed in the CNS, where it regulates diverse functions including neuronal plasticity, neuroinflammation, and blood-brain-barrier integrity. However, its role in different brain regions such as the substantia nigra (SN) is largely unexplored. In this study, we characterize tPA expression, activity, and localization in the SN using a combination of retrograde tracing and β-galactosidase tPA reporter mice.

View Article and Find Full Text PDF

Chronic GIPR agonism results in pancreatic islet GIPR functional desensitisation.

Mol Metab

January 2025

Section of Endocrinology and Investigative Medicine, Imperial College London, United Kingdom. Electronic address:

Objectives: There is renewed interest in targeting the glucose-dependent insulinotropic polypeptide receptor (GIPR) for treatment of obesity and type 2 diabetes. G-protein coupled receptor desensitisation is suggested to reduce the long-term efficacy of glucagon-like-peptide 1 receptor (GLP-1R) agonists and may similarly affect the efficacy of GIPR agonists. We explored the extent of pancreatic GIPR functional desensitisation with sustained agonist exposure.

View Article and Find Full Text PDF

Biotechnology Revolution Shaping the Future of Diabetes Management.

Biomolecules

December 2024

Discipline of Microbiology, Department XIV Microbiology, University of Medicine and Pharmacy from Timisoara, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania.

Diabetes mellitus (DM) has a millennia-long history, with early references dating back to ancient Egypt and India. However, it was not until the 20th century that the connection between diabetes and insulin was fully understood. The sequencing of insulin in the 1950s initiated the convergence of biotechnology and diabetes management, leading to the development of recombinant human insulin in 1982.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!