In the male monkey, luteinising hormone (LH) secretion is regulated by a negative feedback action of testicular testosterone that is exerted indirectly at the hypothalamic level to decelerate pulsatile gonadotrophin-releasing hormone release (GnRH). The purpose of the present experiment was to investigate whether the kisspeptin-G protein-coupled receptor 54 (GPR54) signalling pathway is involved in mediating the action of testosterone to suppress GnRH release in the monkey, as has been indicated by studies of nonprimates. To this end, 12 castrated adult male rhesus monkeys were implanted with either testosterone containing or empty Silastic capsules. Testosterone treatment produced a square wave increment in circulating testosterone levels within the physiologic range. After suppression of LH and follicle-stimulating hormone secretion was established at 5-6 weeks of testosterone exposure, the animals were killed and expression of the genes encoding for kisspeptin, GPR54 and GnRH determined in the mediobasal hypothalamus and preoptic area of both treated and control animals using RNase protection assays. The suppression in pituitary gonadotrophin secretion was associated with a reduction in kisspeptin mRNA levels in the mediobasal hypothalamus, but not the preoptic area. GPR54 mRNA levels, on the other hand, were not influenced by testosterone treatment. These results are consistent with those previously reported for the rodent, and suggest that the neurobiology of the negative feedback action of testicular testosterone on LH secretion in the monkey, a representative higher primate, may be mediated by kisspeptinergic neurones upstream to the GnRH network.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-2826.2007.01549.xDOI Listing

Publication Analysis

Top Keywords

negative feedback
12
feedback action
12
hormone secretion
12
testosterone
9
action testosterone
8
luteinising hormone
8
adult male
8
male rhesus
8
action testicular
8
testicular testosterone
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!