Huntington's disease (HD) is a devastating neurodegenerative disorder that occurs in patients with a mutation in the huntingtin or IT15 gene. Patients are plagued by early cognitive signs, motor deficits, and psychiatric disturbances. Symptoms are attributed to cell death in the striatum and disruption of cortical-striatal circuitry. Mechanisms of cell death are unclear, but processes involving mitochondrial abnormalities, excitotoxicity, and abnormal protein degradation have been implicated. Many factors likely contribute to neuron death and dysfunction, and this has made it difficult to systematically address the pathology in HD. Pharmaceutical therapies are commonly used in patients to treat disease symptoms. These have limited benefit and do not address the inexorable disease progression. Several neuroprotective therapies are being evaluated in animal models of HD as well as in clinical trials. Similarly, cell replacement strategies such as fetal transplantation have been used in the clinic with minimal success, making future cell replacement strategies such as stem cell therapy uncertain. This review describes the disease pathology in HD and addresses many of the past and emerging therapeutic strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3727/000000007783464687 | DOI Listing |
Acta Physiol (Oxf)
February 2025
Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China.
The blood-brain barrier (BBB) is a highly selective, semipermeable barrier critical for maintaining brain homeostasis. The BBB regulates the transport of essential nutrients, hormones, and signaling molecules between the bloodstream and the central nervous system (CNS), while simultaneously protecting the brain from potentially harmful substances and pathogens. This selective permeability ensures that the brain is nourished and shielded from toxins.
View Article and Find Full Text PDFCurr Nutr Rep
January 2025
City University of New York Graduate School of Public Health and Health Policy, 55 West 125th Street, New York, NY, 10027, USA.
Purpose Of Review: Nutition has long been of importance in the care of Huntington's disease (HD). The purpose of this review is to summarize recent research relevant to HD nutrition, and to describe some emerging theoretical approaches to research in this area.
Recent Findings: Clinical studies have identified swallowing problems and fear of choking as major impediments to maintaining nutritional status with HD.
Neurogenetics
January 2025
Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
Huntington's disease (HDs) is a fatal, autosomal dominant, and hereditary neurodegenerative disorder characterized by progressive motor dysfunction, cognitive decline, and psychiatric disturbances. HD is well linked to mutation in the HTT gene, which leads to an abnormal expansion of trinucleotide CAG repeats, resulting in the production of the mHTT protein and responsible for abnormally long poly-Q tract. These abnormal proteins disrupt cellular processes, including neuroinflammation, endoplasmic reticulum (ER) stress, and mitochondrial dysfunction, ultimately leading to selective neuronal loss in the brain.
View Article and Find Full Text PDFACS Pharmacol Transl Sci
January 2025
Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
Sigma 1 receptor (S1R) is a multifunctional, ligand-activated protein located in the membranes of the endoplasmic reticulum (ER). It mediates a variety of neurological disorders, including epilepsy, amyotrophic lateral sclerosis, Alzheimer's disease, Huntington's disease. The wide neuroprotective effects of S1R agonists are achieved by a variety of pro-survival and antiapoptotic S1R-mediated signaling functions.
View Article and Find Full Text PDFBrain Commun
January 2025
Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA 94158, USA.
The largest risk factor for dementia is age. Heterochronic blood exchange studies have uncovered age-related blood factors that demonstrate 'pro-aging' or 'pro-youthful' effects on the mouse brain. The clinical relevance and combined effects of these factors for humans is unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!