Introduction: Benzimidazole D-ribonucleosides inhibit DNA packaging during human cytomegalovirus (HCMV) replication. Although they have been shown to target pUL56 and pUL89, the large and small subunits of the HCMV terminase respectively, their mechanism of action is not yet fully understood.

Methods And Results: To better understand HCMV DNA maturation and the mechanism of action of benzimidazole derivatives, we studied the HCMV pUL89 protein by a genetic approach combined with primary structure analysis. The pUL89 sequence analysis of 25 HCMV strains and counterparts among herpesviruses allowed identification of 12 conserved regions. We also built a three-dimensional model of the pUL89 ATPasic catalytic site, including ATPase motor motifs 1, II and III, that may facilitate the development of future antiviral drugs active against HCMV. Finally, we identified several putative functional domains in pUL89, such as pUL89 zinc finger (pUL89-ZF), DNA cutting sites and portal binding sites, that are probably involved in CMV DNA cleavage and packaging.

Download full-text PDF

Source

Publication Analysis

Top Keywords

functional domains
8
human cytomegalovirus
8
sequence analysis
8
catalytic site
8
mechanism action
8
pul89
7
hcmv
6
domains human
4
cytomegalovirus pul89
4
pul89 predicted
4

Similar Publications

Background: Recent advancements in artificial intelligence (AI) have changed the care processes in mental health, particularly in decision-making support for health care professionals and individuals with mental health problems. AI systems provide support in several domains of mental health, including early detection, diagnostics, treatment, and self-care. The use of AI systems in care flows faces several challenges in relation to decision-making support, stemming from technology, end-user, and organizational perspectives with the AI disruption of care processes.

View Article and Find Full Text PDF

The exterior surface of the human pathogen is coated with a capsular polysaccharide (CPS) that consists of a repeating sequence of 2-5 different sugars that can be modified with various molecular decorations. In the HS:2 serotype from strain NCTC 11168, the repeating unit within the CPS is composed of d-ribose, -acetyl-d-galactosamine, and a d-glucuronic acid that is further amidated with either serinol or ethanolamine. The d-glucuronic acid moiety is also decorated with d-glycero-l-gluco-heptose.

View Article and Find Full Text PDF

is the leading cause of food poisoning in Europe and North America. The exterior surface of this bacterium is encased by a capsular polysaccharide that is attached to a diacyl glycerol phosphate anchor via a poly-Kdo (3-deoxy-d--oct-2-ulosinic acid) linker. In the HS:2 serotype of NCTC 11168, the repeating trisaccharide consists of d-ribose, -acetyl-d-glucosamine, and d-glucuronate.

View Article and Find Full Text PDF

Diverse autoinhibitory mechanisms of FIIND-containing proteins: Insight into regulation of NLRP1 and CARD8 inflammasome.

PLoS Pathog

January 2025

Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Function-to-find domain (FIIND)-containing proteins, including NLRP1 and CARD8, are vital components of the inflammasome signaling pathway, critical for the innate immune response. These proteins exist in various forms due to autoproteolysis within the FIIND domain, resulting in full-length (FL), cleaved N-terminal (NT), and cleaved C-terminal (CT) peptides, which form autoinhibitory complexes in the steady state. However, the detailed mechanism remains elusive.

View Article and Find Full Text PDF

Organic fertilizers have been identified as a sustainable agricultural practice that can enhance productivity and reduce environmental impact. Recently, the European Union defined and accepted insect frass as an innovative and emerging organic fertilizer. In the wider domain of organic fertilizers, mathematical and computational models have been developed to optimize their production and application conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!