The Systems Biology Markup Language (SBML) is an XML-based format for representing mathematical models of biochemical reaction networks, and it is likely to become a main standard in the systems biology community. As published mathematical models in cell biology are growing in number and size, modular modelling approaches will gain additional importance. The main issue to be addressed in computer-assisted model combination is the specification and handling of model semantics. The software SBMLmerge assists the user in combining models of biological subsystems to larger biochemical networks. First, the program helps the user in annotating all model elements with unique identifiers pointing to databases such as KEGG or Gene Ontology. Second, during merging, SBMLmerge detects and resolves various syntactic and semantic problems. Typical problems are conflicting variable names, elements which appear in more than one input model, and mathematical problems arising from the combination of equations. If the input models make contradicting statements about a biochemical quantity, the user is asked to choose between them. In the end the merging process results in a new, valid SBML model.
Download full-text PDF |
Source |
---|
J Agric Food Chem
December 2024
State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, People's Republic of China.
Sativene-related sesquiterpenoids including -sativene analogs are a large member of fungal secondary metabolites with phytotoxic and growth-promoting effects on different plants. In this report, a series of sativene-related sesquiterpenoids with diverse carbon skeletons (-, sativene/isosativene/-sativene/cyclosativene/-isosativene ring systems) were isolated from the plant pathogenic fungus based on a molecular networking strategy. The undescribed structures were elucidated based on NMR spectra, X-ray diffraction analysis, chemical derivation, and calculated electronic circular dichroism calculations.
View Article and Find Full Text PDFCell Regen
December 2024
Guangzhou National Laboratory, Guangzhou, 510005, China.
Gastric cancer is one of the most common malignancies with poor prognosis. The use of organoids to simulate gastric cancer has rapidly developed over the past several years. Patient-derived gastric cancer organoids serve as in vitro models that closely mimics donor characteristics, offering new opportunities for both basic and applied research.
View Article and Find Full Text PDFJ Med Chem
December 2024
Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany.
Members of the casein kinase 1 (CK1) family have emerged as key regulators of cellular signaling and as potential drug targets. Functional annotation of the 7 human isoforms would benefit from isoform-selective inhibitors, allowing studies on the role of these enzymes in normal physiology and disease pathogenesis. However, due to significant sequence homology within the catalytic domain, isoform selectivity is difficult to achieve with conventional small molecules.
View Article and Find Full Text PDFElife
December 2024
Department of Chemistry and Physics, Indiana State University, Terre Haute, United States.
Understanding the origins of novel, complex phenotypes is a major goal in evolutionary biology. Poison frogs of the family Dendrobatidae have evolved the novel ability to acquire alkaloids from their diet for chemical defense at least three times. However, taxon sampling for alkaloids has been biased towards colorful species, without similar attention paid to inconspicuous ones that are often assumed to be undefended.
View Article and Find Full Text PDFElife
December 2024
Biozentrum, Universität Basel, Basel, Switzerland.
As pathogens spread in a population of hosts, immunity is built up, and the pool of susceptible individuals are depleted. This generates selective pressure, to which many human RNA viruses, such as influenza virus or SARS-CoV-2, respond with rapid antigenic evolution and frequent emergence of immune evasive variants. However, the host's immune systems adapt, and older immune responses wane, such that escape variants only enjoy a growth advantage for a limited time.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!