Extreme skewing of X-chromosome inactivation (XCI) is rare in the normal female population but is observed frequently in carriers of some X-linked mutations. Recently, it has been shown that various forms of X-linked mental retardation (XLMR) have a strong association with skewed XCI in female carriers, but the mechanisms underlying this skewing are unknown. ATR-X syndrome, caused by mutations in a ubiquitously expressed, chromatin-associated protein, provides a clear example of XLMR in which phenotypically normal female carriers virtually all have highly skewed XCI biased against the X chromosome that harbors the mutant allele. Here, we have used a mouse model to understand the processes causing skewed XCI. In female mice heterozygous for a null Atrx allele, we found that XCI is balanced early in embryogenesis but becomes skewed over the course of development, because of selection favoring cells expressing the wild-type Atrx allele. Unexpectedly, selection does not appear to be the result of general cellular-viability defects in Atrx-deficient cells, since it is restricted to specific stages of development and is not ongoing throughout the life of the animal. Instead, there is evidence that selection results from independent tissue-specific effects. This illustrates an important mechanism by which skewed XCI may occur in carriers of XLMR and provides insight into the normal role of ATRX in regulating cell fate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1867101PMC
http://dx.doi.org/10.1086/518369DOI Listing

Publication Analysis

Top Keywords

skewed xci
16
x-chromosome inactivation
8
x-linked mental
8
mental retardation
8
mouse model
8
normal female
8
xci female
8
female carriers
8
atrx allele
8
xci
6

Similar Publications

KDM6A facilitates Xist upregulation at the onset of X inactivation.

Biol Sex Differ

January 2025

Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, 98195, USA.

Background: X chromosome inactivation (XCI) is a female-specific process in which one X chromosome is silenced to balance X-linked gene expression between the sexes. XCI is initiated in early development by upregulation of the lncRNA Xist on the future inactive X (Xi). A subset of X-linked genes escape silencing and thus have higher expression in females, suggesting female-specific functions.

View Article and Find Full Text PDF

Over 70 intragenic copy-number variations (CNVs) of PHEX have been identified in patients with X-linked hypophosphatemia (XLH). However, the underlying mechanism of these CNVs has been poorly investigated. Furthermore, although PHEX undergoes X chromosome inactivation (XCI), the association between XLH in women with heterozygous PHEX variants and skewed XCI remains unknown.

View Article and Find Full Text PDF

X-inactive-specific transcript: a long noncoding RNA with a complex role in sex differences in human disease.

Biol Sex Differ

December 2024

Department of Internal Medicine, Pulmonary, Critical Care, and Sleep Medicine, Rush University Medical Center, Chicago, IL, 60612, USA.

In humans, the X and Y chromosomes determine the biological sex, XX specifying for females and XY for males. The long noncoding RNA X-inactive specific transcript (lncRNA XIST) plays a crucial role in the process of X chromosome inactivation (XCI) in cells of the female, a process that ensures the balanced expression of X-linked genes between sexes. Initially, it was believed that XIST can be expressed only from the inactive X chromosome (Xi) and is considered a typically female-specific transcript.

View Article and Find Full Text PDF

X-chromosome-wide association study for Alzheimer's disease.

Mol Psychiatry

December 2024

Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, LabEx DISTALZ - U1167-RID-AGE Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, France.

Article Synopsis
  • A study was conducted to investigate the X-chromosome's role in Alzheimer's Disease (AD), which had been overlooked in previous genome-wide association studies.
  • The research included 115,841 AD cases and 613,671 controls, considering different X-chromosome inactivation (XCI) states in females.
  • While no strong genetic risk factors for AD were found on the X-chromosome, seven significant loci were identified, suggesting areas for future research.
View Article and Find Full Text PDF

A landscape of X-inactivation during human T cell development.

Nat Commun

December 2024

Crown Princess Victoria Children's Hospital, and Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden.

Females exhibit a more robust immune response to both self-antigens and non-self-antigens than males, resulting in a higher prevalence of autoimmune diseases but more effective responses against infection. Increased expression of X-linked immune genes in female T cells is thought to underlie this enhanced response. Here we isolate thymocytes from pediatric thymi of healthy males (46, XY), females (46, XX), a female with completely skewed X-chromosome inactivation (46, XX, cXCI) and a female with Turner syndrome (45, X0).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!