Background: An inherited disorder, X-linked adrenoleukodystrophy (X-ALD) is known to cause progressive inflammatory demyelination.
Objective: To analyze the adult pattern of disease progression in X-ALD.
Design, Setting, And Patients: We retrospectively assessed magnetic resonance (MR) images obtained in adult patients who had developed cerebral disease between January 1, 1985, and December 31, 2005. We identified 103 adult patients with X-ALD with lesions on their MR images. Of these, 56 had serial MR examinations at least 1 year apart and were included in this study. Main Outcome Measure Progression of X-ALD lesions on MR images.
Results: On initial presentation, 17 patients with X-ALD had corticospinal tract lesions without splenium or genu involvement, 24 had symmetric corticospinal tract lesions with additional involvement of the splenium or genu, and 15 did not have corticospinal tract involvement but had other white matter lesions. In 18 of 21 patients with progressive lesions, corticospinal tract involvement preceded or occurred concurrently with progressive inflammatory demyelination.
Conclusions: Brain MR imaging abnormalities in adults with X-ALD progress slower than those reported in childhood. The involvement of the corticospinal tracts is prominent and may at times represent a variant course of progressive inflammatory demyelination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1001/archneur.64.5.659 | DOI Listing |
Brain Sci
January 2025
Waisman Center, University of Wisconsin-Madison, Madison, WI 53706, USA.
Background: Perinatal brain injury is a leading cause of developmental disabilities, including cerebral palsy. However, further work is needed to understand early brain development in the presence of brain injury. In this case report, we examine the longitudinal neuromotor development of a term infant following a significant loss of right-hemispheric brain tissue due to a unilateral ischemic stroke.
View Article and Find Full Text PDFNeurosurg Focus Video
January 2025
Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
Brainstem tumors are bounded by a compact topography of eloquent tracts, cranial nerves, and nuclei. Reliable intraoperative neuromonitoring aids microneurosurgical technique to optimize safe resection. The authors present a case of motor mapping-guided resection of a recurrent brainstem pilocytic astrocytoma.
View Article and Find Full Text PDFQuant Imaging Med Surg
January 2025
Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
Background: Pediatric growth hormone deficiency (GHD) is a disease resulting from the impaired growth hormone-insulin-like growth factor-1 (GH-IGF-1) axis, but the effects of GHD on children's behavior and brain microstructural structure alterations have not yet been fully clarified. We aimed to investigate the quantitative profiles of gray matter and white matter in pediatric GHD using synthetic magnetic resonance imaging (MRI).
Methods: The data of 50 children with GHD and 50 typically developing (TD) children were prospectively collected.
JAMA Neurol
January 2025
Department of Neurology, Xuanwu Hospital Capital Medical University, National Center for Neurological Disorders, Beijing, China.
Importance: Autoantibodies targeting astrocytes, such as those against glial fibrillary acidic protein (GFAP) or aquaporin protein 4, are crucial diagnostic markers for autoimmune astrocytopathy among central nervous system (CNS) autoimmune disorders. However, diagnosis remains challenging for patients lacking specific autoantibodies.
Objective: To characterize a syndrome of unknown meningoencephalomyelitis associated with an astrocytic autoantibody.
J Neuroeng Rehabil
January 2025
Shirley Ryan AbilityLab, Chicago, IL, USA.
There is a consensus that motor recovery post-stroke primarily depends on the degree of the initial connectivity of the ipsilesional corticospinal tract (CST). Indeed, if the residual CST connectivity is sufficient to convey motor commands, the neuromotor system continues to use the CST predominantly, and motor function recovers up to 80%. In contrast, if the residual CST connectivity is insufficient, hand/arm dexterity barely recovers, even as the phases of stroke progress.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!