New developments in fibroblast and myofibroblast biology: implications for fibrosis and scleroderma.

Curr Rheumatol Rep

Department of Medicine, Royal Free and University College Medical School, University College London (Hampstead Campus), Rowland Hill Street, London NW3 2PF, United Kingdom.

Published: May 2007

AI Article Synopsis

  • Mesenchymal fibroblasts have transitioned from being passive structural cells to active, versatile cells involved in connective tissue formation, healing, and scarring.
  • In wound healing, these fibroblasts release proinflammatory signals and produce essential components like collagens and fibronectins to aid in tissue repair.
  • The article also explores how fibroblasts can develop into myofibroblasts, which are crucial for wound closure and scar formation, and covers their implications in conditions like scleroderma.

Article Abstract

The concept of mesenchymal fibroblasts has evolved over the past two decades from a relatively inert structural cell type to a dynamic, pluripotent cell lineage controlling normal connective tissue formation, homeostasis, and repair and as principle players in pathogenic scarring and fibrosis. In wound healing and tissue repair, fibroblasts provide proinflammatory signals and synthesize interstitial collagens, fibronectins, and other matrix components to repair the damaged tissue. Fibroblasts can differentiate into the myofibroblast, a specialized contractile cell type responsible for wound closure, tissue contraction, and scarring. This article reviews our current understanding of the origins of mesenchymal cells and their role in excessive scarring and fibrogenesis and in the systemic fibrotic disease scleroderma.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11926-007-0008-zDOI Listing

Publication Analysis

Top Keywords

cell type
8
developments fibroblast
4
fibroblast myofibroblast
4
myofibroblast biology
4
biology implications
4
implications fibrosis
4
fibrosis scleroderma
4
scleroderma concept
4
concept mesenchymal
4
mesenchymal fibroblasts
4

Similar Publications

Cell-cell crosstalk in the pathogenesis of acute lung injury and acute respiratory distress syndrome.

Tissue Barriers

January 2025

Sepsis Translational Medicine Key Laboratory of Hunan Province, Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, PR China.

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are the result of an exaggerated inflammatory response triggered by a variety of pulmonary and systemic insults. The lung tissues are comprised of a variety of cell types, including alveolar epithelial cells, pulmonary vascular endothelial cells, macrophages, neutrophils, and others. There is mounting evidence that these diverse cell populations within the lung interact to regulate lung inflammation in response to both direct and indirect stimuli.

View Article and Find Full Text PDF

Gestational diabetes mellitus (GDM) is a metabolic disorder that arises during pregnancy and heightens the risk of placental dysplasia. Ginsenoside Re (Re) may stabilize insulin and glucagon to regulate glucose levels, which may improve diabetes-associated diseases. This study aims to investigate the mechanism of Re in high glucose (HG)-induced apoptosis of trophoblasts through endoplasmic reticulum stress (ERS)-related protein CHOP/GADD153.

View Article and Find Full Text PDF

Gymnostachyum febrifugum, a less-known ethnomedicinal plant from the Western Ghats of India, is used to treat various diseases and serves as an antioxidant and antibacterial herb. The present study aims to profile the cytotoxic phytochemicals in G. febrifugum roots using GC-MS/MS, in vitro confirmation of cytotoxic potential against breast cancer and an in silico study to understand the mechanism of action.

View Article and Find Full Text PDF

Nucleotide-binding oligomerization domain protein 1 (NOD1) is one of the innate immune receptors that has been associated with tumorigenesis and abnormally expressed in various cancers. However, the role of NOD1 in Glioblastoma Multiforme (GBM) has not been investigated. We used the Tumor Immune Estimate Resource (TIMER) database to compare the differential expression of NOD1 in various tumors.

View Article and Find Full Text PDF

Stroke is the second-leading global cause of death. The damage attributed to the immune storm triggered by ischemia-reperfusion injury (IRI) post-stroke is substantial. However, data on the transcriptomic dynamics of pyroptosis in IRI are limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!