Interfacing collective atomic excitations and single photons.

Phys Rev Lett

Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.

Published: May 2007

We study the performance and limitations of a coherent interface between collective atomic states and single photons. A quantized spin-wave excitation of an atomic sample inside an optical resonator is prepared probabilistically, stored, and adiabatically converted on demand into a sub-Poissonian photonic excitation of the resonator mode. The measured peak single-quantum conversion efficiency of chi=0.84(11) and its dependence on various parameters are well described by a simple model of the mode geometry and multilevel atomic structure, pointing the way towards implementing high-performance stationary single-photon sources.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.98.183601DOI Listing

Publication Analysis

Top Keywords

collective atomic
8
single photons
8
interfacing collective
4
atomic
4
atomic excitations
4
excitations single
4
photons study
4
study performance
4
performance limitations
4
limitations coherent
4

Similar Publications

Biomimetic Confined Assembly of Plasmonic CuS from Electronic Waste for Rapid Photothermal Disinfection.

ACS Nano

January 2025

State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.

Photothermal disinfection (PTD) offers promising potential for water purification due to its sustainable and broad-spectrum bactericidal properties, although it is hindered by slow charge separation in photosensitizers. Herein, we present a plasma-mediated PTD technique utilizing an efficient localized heating effect induced by incident light at specific wavelengths for rapid bacterial inactivation. A metallic CuS photosensitizer, derived from electronic waste through a biomimetic transmembrane confined-assembled strategy, facilitates collective and coherent oscillation of free electrons around Cu atoms in the near-infrared range.

View Article and Find Full Text PDF

The elongation of tissues and organs is important for proper morphogenesis in animal development. In Drosophila ovaries, the elongation of egg chambers involves aligned Collagen IV fiber-like structures, a gradient of extracellular matrix stiffness and actin-based protrusion-driven collective cell migration, leading to the rotation of the egg chamber. Egg chamber elongation and rotation depend on the atypical cadherin Fat2.

View Article and Find Full Text PDF

Liquid crystals (LC) are widely used in various optical devices due to their birefringence, dielectric anisotropy, and responsive behavior to external fields. Enhancing the properties of existing LCs through doping with nanoparticles, including semiconductor quantum dots, offers a promising route for improving their performance. Among various nanoparticles, QDs stand out for their high charge mobility, sensitivity in the near-infrared spectral region, and cost-effectiveness.

View Article and Find Full Text PDF

Full Quantum Dynamics Study for H Atom Scattering from Graphen.

J Phys Chem A

January 2025

Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay UMR 8214, 91405 Orsay, France.

This study deals with the understanding of hydrogen atom scattering from graphene, a process critical for exploring C-H bond formation and energy transfer during atom surface collision. In our previous work [Shi, L.; 2023, 159, 194102], starting from a cell with 24 carbon atoms treated periodically, we have achieved quantum dynamics (QD) simulations with a reduced-dimensional model (15D) and a simulation in full dimensionality (75D).

View Article and Find Full Text PDF

Atomic nuclei serve as prime laboratories for investigations of complex quantum phenomena, where minor nucleon rearrangements cause significant structural changes. Pb is the heaviest known neutron-deficient Pb isotope that can exhibit three distinct shapes: prolate, oblate, and spherical, with nearly degenerate excitation energies. Here we report on the combined results from three state-of-the-art measurements to directly observe these deformations in Pb.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!