Resonant channel coupling in electron scattering by pyrazine.

Phys Rev Lett

A.A. Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, USA.

Published: March 2007

Detailed investigation of the three low-energy resonances seen in electron scattering by the diazabenzene molecule pyrazine reveals that the first two are nearly pure single-channel shape resonances, but the third is, as long suspected, heavily mixed with core-excited resonances built on low-lying triplet states. Such resonant channel coupling is likely to be widespread in pi-ring molecules, including the nucleobases of DNA and RNA, where it may form a pathway for radiation damage.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.98.113201DOI Listing

Publication Analysis

Top Keywords

resonant channel
8
channel coupling
8
electron scattering
8
coupling electron
4
scattering pyrazine
4
pyrazine detailed
4
detailed investigation
4
investigation three
4
three low-energy
4
low-energy resonances
4

Similar Publications

In recent decades, research on mechanotransduction has advanced considerably, focusing on the effects of audible acoustic waves (AAWs) and low-vibration stimulation (LVS), which has propelled the field of sonobiology forward. Taken together, the current evidence demonstrates the influence of these biosignals on key cellular processes, such as growth, differentiation and migration in mammalian cells, emphasizing the determining role of specific physical parameters during stimulation, such as frequency, sound pressure level/amplitude and exposure time. These mechanical waves interact with various cellular elements, including ion channels, primary cilia, cell-cell adhesion receptors, cell-matrix and extracellular matrix proteins, and focal adhesion complexes.

View Article and Find Full Text PDF

Acetylcholine modulates the network physiology of the hippocampus, a crucial brain structure that supports cognition and memory formation in mammals . In this and adjacent regions, synchronized neuronal activity within theta-band oscillations (4-10Hz) is correlated with attentive processing that leads to successful memory encoding . Acetylcholine facilitates the hippocampus entering a theta oscillatory regime and modulates the temporal organization of activity within theta oscillations .

View Article and Find Full Text PDF

Hot dry rock (HDR) geothermal development faces challenges due to the difficulty of stimulating fluid flow and heat-exchange fracture channels within deep, low-porosity, and low-permeability reservoirs. A liquid nitrogen cyclic cold shock method was proposed, using liquid nitrogen as a fracturing fluid. The large temperature difference between the liquid nitrogen and the hot rock induces thermal stress, forming a complex pore-fracture network.

View Article and Find Full Text PDF

Ultra-wide range control of topological acoustic waveguidesa).

J Acoust Soc Am

January 2025

Jianglu Mechanical Electrical Group Company Limited, Xiangtan 411105, China.

Topological acoustic waveguides have a potential for applications in the precise transmission of sound. Currently, there is more attention to multi-band in this field. However, achieving tunability of the operating band is also of great significance.

View Article and Find Full Text PDF

We developed an isolated auditory papilla of the crested gecko to record from the hair cells and explore the origins of frequency tuning. Low-frequency cells displayed electrical tuning, dependent on Ca-activated K channels; high-frequency cells, overlain with sallets, showed a variation in hair bundle stiffness which when combined with sallet mass could provide a mechanical resonance of 1 to 6 kHz. Sinusoidal electrical currents injected extracellularly evoked hair bundle oscillations at twice the stimulation frequency, consistent with fast electromechanical responses from hair bundles of two opposing orientations, as occur in the sallets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!